Journal of the Mathematical Society of Japan

Disconnection and level-set percolation for the Gaussian free field

Alain-Sol SZNITMAN

Full-text: Open access

Abstract

We study the level-set percolation of the Gaussian free field on $\mathbb Z^d$, $d \ge 3$. We consider a level $\alpha$ such that the excursion-set of the Gaussian free field above $\alpha$ percolates. We derive large deviation estimates on the probability that the excursion-set of the Gaussian free field below the level $\alpha$ disconnects a box of large side-length from the boundary of a larger homothetic box. It remains an open question whether our asymptotic upper and lower bounds are matching. With the help of a recent work of Lupu [21], we are able to infer some asymptotic upper bounds for similar disconnection problems by random interlacements, or by simple random walk.

Article information

Source
J. Math. Soc. Japan, Volume 67, Number 4 (2015), 1801-1843.

Dates
First available in Project Euclid: 27 October 2015

Permanent link to this document
https://projecteuclid.org/euclid.jmsj/1445951168

Digital Object Identifier
doi:10.2969/jmsj/06741801

Mathematical Reviews number (MathSciNet)
MR3417515

Zentralblatt MATH identifier
1337.60246

Subjects
Primary: 60F10: Large deviations 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43] 60G15: Gaussian processes 82B43: Percolation [See also 60K35]

Keywords
Gaussian free field level-set percolation disconnection

Citation

SZNITMAN, Alain-Sol. Disconnection and level-set percolation for the Gaussian free field. J. Math. Soc. Japan 67 (2015), no. 4, 1801--1843. doi:10.2969/jmsj/06741801. https://projecteuclid.org/euclid.jmsj/1445951168


Export citation

References

  • R. J. Adler and J. E. Taylor, Random Fields and Geometry, Springer, Berlin, 2007.
  • K. S. Alexander, J. T. Chayes and L. Chayes, The Wulff construction and asymptotics of the finite cluster distribution for two-dimensional Bernoulli percolation, Commun. Math. Phys., 131 (1990), 1–150.
  • E. Bolthausen, J.-D. Deuschel and O. Zeitouni, Entropic repulsion for the lattice free field, Commun. Math. Phys., 170 (1995), 417–443.
  • E. Bolthausen and J. D. Deuschel, Critical large deviations for Gaussian fields in the phase transition regime, Ann. Probab., 21 (1993), 1876–1920.
  • J. Bricmont, J. L. Lebowitz and C. Maes, Percolation in strongly correlated systems: the massless Gaussian field, J. Stat. Phys., 48 (1987), 1249–1268.
  • M. Campanino and L. Russo, An upper bound on the critical percolation probability for the three-dimensional cubic lattice, Ann. Probab., 13 (1985), 478–491.
  • R. Cerf, Large deviations for three dimensional supercritical percolation, Astérisque, 267, Société Mathématique de France, 2000.
  • J. D. Deuschel and D. W. Stroock, Large deviations, Academic Press, Boston, 1989.
  • A. Drewitz, B. Ráth and A. Sapozhnikov, Local percolative properties of the vacant set of random interlacements with small intensity, Ann. Inst. Henri Poincaré Probab. Stat., 50 (2014), 1165–1197.
  • A. Drewitz, B. Ráth and A. Sapozhnikov, On chemical distances and shape theorems in percolation models with long-range correlations, J. Math. Phys., 55 (2014), 30.
  • A. Drewitz and P.-F. Rodriguez, High-dimensional asymptotics for percolation of Gaussian free field level sets, Electron. J. Probab., 20 (2015), no.,47, 1–39.
  • M. Fukushima, Y. Oshima and M. Takeda, Dirichlet forms and symmetric Markov processes, Walter de Gruyter, Berlin, 1994.
  • O. Garet, Percolation transition for some excursion sets, Electronic. J. Probab., 9 (2004), 244–292.
  • G. Giacomin, Aspects of statistical mechanics of random surfaces, Notes of lectures at IHP (Fall 2001), version of February 24, 2003, available at http://www.proba.jussieu.fr/pageperso/giacomin/pub/IHP.ps, 2003.
  • G. Grimmett, Percolation, Second edition, Springer, Berlin, 1999.
  • G. F. Lawler, Intersections of random walks, Birkhäuser, Basel, 1991.
  • J. L. Lebowitz and H. Saleur, Percolation in strongly correlated systems, Phys. A, 138 (1986), 194–205.
  • X. Li and A. S. Sznitman, Large deviations for occupation time profiles of random interlacements, Probab. Theory Related Fields, 161 (2015), 309–350.
  • X. Li and A. S. Sznitman, A lower bound for disconnection by random interlacements, Electron. J. Probab., 19 (2014), 126.
  • T. Liggett, R. H. Schonmann and A. M. Stacey, Domination by product measures, Ann. Probab., 25 (1997), 71–95.
  • T. Lupu, From loop clusters and random interlacement to the free field, preprint, available at arXiv:1402.0298.
  • V. Marinov, Percolation in correlated systems, PhD thesis, Rutgers University, available online at: http://www.books.google.com/books?sisbn=0549701338, 2007.
  • S. Popov and B. Ráth, On decoupling inequalities and percolation of excursion sets of the Gaussian free field, J. Stat. Phys., 159 (2015), 312–320.
  • S. Popov and A. Teixeira, Soft local times and decoupling of random interlacements, to appear in J. Eur. Math. Soc., also available at arXiv:1212.1605.
  • S. Port and C. Stone, Brownian motion and classical Potential Theory, Academic Press, New York, 1978.
  • P.-F. Rodriguez and A. S. Sznitman, Phase transition and level-set percolation for the Gaussian free field, Commun. Math. Phys., 320 (2013), 571–601.
  • F. Spitzer, Principles of random walk, Springer, Berlin, second edition, 2001.
  • A. S. Sznitman, Vacant set of random interlacements and percolation, Ann. Math., 171 (2010), 2039–2087.
  • A. S. Sznitman, Decoupling inequalities and interlacement percolation on $G \times Z$, Invent. Math., 187 (2012), 645–706.
  • A. S. Sznitman, An isomorphism theorem for random interlacements, Electron. Commun. Probab., 17 (2012), 1–9.
  • A. Teixeira, On the size of a finite vacant cluster of random interlacements with small intensity, Probab. Theory Related Fields, 150 (2011), 529–574.
  • Á. Timár, Boundary connectivity via graph theory, Proc. Amer. Math. Soc., 141 (2012), 475–480.
  • D. Windisch, On the disconnection of a discrete cylinder by a biased random walk, Ann. Appl. Probab., 18 (2008), 1441–1490.
  • W. Woess, Random walks on infinite graphs and groups, Cambridge University Press, 2000.