Journal of Applied Mathematics

  • J. Appl. Math.
  • Volume 2013, Special Issue (2013), Article ID 409387, 13 pages.

Structure-Induced Dynamics of Erythrocyte Aggregates by Microscale Simulation

Tong Wang, Zhongwen Xing, and Dingyu Xing

Full-text: Open access

Abstract

Erythrocyte aggregation and dissociation play an important role in the determination of hemodynamical properties of blood flow in microcirculation. This paper intends to investigate the adhesion and dissociation kinetics of erythrocytes through computational modeling. The technique of immersed boundary-fictitious domain method has been applied to the study of erythrocyte aggregates traversing modeled stenotic microchannels. The effects of stenosis geometry, cell membrane stiffness, and intercellular interaction strength on aggregate hemodynamics including transit velocity are studied. It is found that the width of the stenosis throat and shape of stenosis have a significant influence on the dissociation of the aggregates. Moreover, horizontally orientated erythrocyte aggregates are observed to dissociate much easier than their vertical counterparts under the same simulation conditions. Results from this study contribute to the fundamental understanding and knowledge on the biophysical characteristics of erythrocyte aggregates in microscopic blood flow, which will provide pathological insights into some human diseases, such as malaria.

Article information

Source
J. Appl. Math., Volume 2013, Special Issue (2013), Article ID 409387, 13 pages.

Dates
First available in Project Euclid: 7 May 2014

Permanent link to this document
https://projecteuclid.org/euclid.jam/1399493304

Digital Object Identifier
doi:10.1155/2013/409387

Zentralblatt MATH identifier
1271.92015

Citation

Wang, Tong; Xing, Zhongwen; Xing, Dingyu. Structure-Induced Dynamics of Erythrocyte Aggregates by Microscale Simulation. J. Appl. Math. 2013, Special Issue (2013), Article ID 409387, 13 pages. doi:10.1155/2013/409387. https://projecteuclid.org/euclid.jam/1399493304


Export citation

References

  • O. K. Baskurt, R. A. Farley, and H. J. Meiselman, “Erythrocyte aggregation tendency and cellular properties in horse, human, and rat: a comparative study,” American Journal of Physiology, vol. 273, no. 6, pp. H2604–H2612, 1997.
  • O. K. Baskurt, M. Bor-Kucukatay, O. Yalcin, and H. J. Meiselman, “Aggregation behavior and electrophoretic mobility of red blood cells in various mammalian species,” Biorheology, vol. 37, no. 5-6, pp. 417–428, 2000.
  • S. M. Razavian, M. Del Pino, A. Simon, and J. Levenson, “Increase in erythrocyte disaggregation shear stress in hypertension,” Hypertension, vol. 20, no. 2, pp. 247–252, 1992.
  • D. Lominadze, I. G. Joshua, and D. A. Schuschke, “Increased erythrocyte aggregation in spontaneously hypertensive rats,” American Journal of Hypertension, vol. 11, no. 7, pp. 784–789, 1998.
  • A. S. Popel and P. C. Johnson, “Microcirculation and hemorheology,” Annual Review of Fluid Mechanics, vol. 37, pp. 43–69, 2005.
  • A. Kim, H. Dadgostar, G. N. Holland et al., “Hemorheologic abnormalities associated with HIV infection: altered erythrocyte aggregation and deformability,” Investigative Ophthalmology and Visual Science, vol. 47, no. 9, pp. 3927–3932, 2006.
  • A. Luquita, L. Urli, M. J. Svetaz et al., “Erythrocyte aggregation in rheumatoid arthritis: cell and plasma factor's role,” Clinical Hemorheology and Microcirculation, vol. 41, no. 1, pp. 49–56, 2009.
  • H. A. Cranston, C. W. Boylan, and G. L. Carroll, “Plasmodium falciparum maturation abolishes physiologic red cell deformability,” Science, vol. 223, no. 4634, pp. 400–403, 1984.
  • J. P. Shelby, J. White, K. Ganesan, P. K. Rathod, and D. T. Chiu, “A microfluidic model for single-cell capillary obstruction by Plasmodium falciparum-infected erythrocytes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 25, pp. 14618–14622, 2003.
  • C. T. Lim, “Single cell mechanics study of the human disease malaria,” Journal of Biomechanical Science and Engineering, vol. 1, no. 1, pp. 82–92, 2006.
  • S. Suresh, J. Spatz, J. P. Mills et al., “Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria,” Acta Biomaterialia, vol. 1, no. 1, pp. 15–30, 2005.
  • D. A. Fedosov, B. Caswell, S. Suresh, and G. E. Karniadakis, “Quantifying the biophysical characteristics of Plasmodium falciparum-parasitized red blood cells in microcirculation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 1, pp. 35–39, 2011.
  • B. Neu, J. K. Armstrong, T. C. Fisher, and H. J. Meiselman, “Aggregation of human RBC in binary dextran–-PEG polymer mixtures,” Biorheology, vol. 38, no. 1, pp. 53–68, 2001.
  • J. K. Armstrong, R. B. Wenby, H. J. Meiselman, and T. C. Fisher, “The hydrodynamic radii of macromolecules and their effect on red blood cell aggregation,” Biophysical Journal, vol. 87, no. 6, pp. 4259–4270, 2004.
  • M. W. Rampling, H. J. Meiselman, B. Neu, and O. K. Baskurt, “Influence of cell-specific factors on red blood cell aggregation,” Biorheology, vol. 41, no. 2, pp. 91–112, 2004.
  • T. Y. Wong, R. Klein, A. R. Sharrett et al., “Cerebral white matter lesions, retinopathy, and incident clinical stroke,” The Journal of the American Medical Association, vol. 288, no. 1, pp. 67–74, 2002.
  • R. Skalak and P.-I. Branemark, “Deformation of red blood cells in capillaries,” Science, vol. 164, no. 3880, pp. 717–719, 1969.
  • Y. Suzuki, N. Tateishi, M. Soutani, and N. Maeda, “Deformation of erythrocytes in microvessels and glass capillaries: effects of erythrocyte deformability,” Microcirculation, vol. 3, no. 1, pp. 49–57, 1996.
  • J. Li, G. Lykotrafitis, M. Dao, and S. Suresh, “Cytoskeletal dynamics of human erythrocyte,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 12, pp. 4937–4942, 2007.
  • H. Noguchi, G. Gompper, L. Schmid, A. Wixforth, and T. Franke, “Dynamics of fluid vesicles in flow through structured microchannels,” Europhysics Letters, vol. 89, no. 2, Article ID 28002, 2010.
  • H. W. Hou, Q. S. Li, G. Y. H. Lee, A. P. Kumar, C. N. Ong, and C. T. Lim, “Deformability study of breast cancer cells using microfluidics,” Biomedical Microdevices, vol. 11, no. 3, pp. 557–564, 2009.
  • S. Braunmüller, L. Schmid, and T. Franke, “Dynamics of red blood cells and vesicles in microchannels of oscillating width,” Journal of Physics, vol. 23, no. 18, Article ID 184116, 2011.
  • M. Fenech, D. Garcia, H. J. Meiselman, and G. Cloutier, “A particle dynamic model of red blood cell aggregation kinetics,” Annals of Biomedical Engineering, vol. 37, no. 11, pp. 2299–2309, 2009.
  • Y. Liu, L. Zhang, X. Wang, and W. K. Liu, “Coupling of Navier-Stokes equations with protein molecular dynamics and its application to hemodynamics,” International Journal for Numerical Methods in Fluids, vol. 46, no. 12, pp. 1237–1252, 2004.
  • P. Bagchi, P. C. Johnson, and A. S. Popel, “Computational fluid dynamic simulation of aggregation of deformable cells in a shear flow,” Journal of Biomechanical Engineering, vol. 127, no. 7, pp. 1070–1080, 2005.
  • Y. Liu and W. K. Liu, “Rheology of red blood cell aggregation by computer simulation,” Journal of Computational Physics, vol. 220, no. 1, pp. 139–154, 2006.
  • J. Zhang, P. C. Johnson, and A. S. Popel, “Red blood cell aggregation and dissociation in shear flows simulated by lattice Boltzmann method,” Journal of Biomechanics, vol. 41, no. 1, pp. 47–55, 2008.
  • J. Zhang, P. C. Johnson, and A. S. Popel, “Effects of erythrocyte deformability and aggregation on the cell free layer and apparent viscosity of microscopic blood flows,” Microvascular Research, vol. 77, no. 3, pp. 265–272, 2009.
  • D. A. Fedosov, B. Caswell, A. S. Popel, and G. E. M. Karniadakis, “Blood flow and cell-free layer in microvessels,” Microcirculation, vol. 17, no. 8, pp. 615–628, 2010.
  • T. Wang, T.-W. Pan, Z. W. Xing, and R. Glowinski, “Numerical simulation of rheology of red blood cell rouleaux in microchannels,” Physical Review E, vol. 79, no. 4, Article ID 041916, 11 pages, 2009.
  • K. I. Tsubota, S. Wada, and T. Yamaguchi, “Simulation study on effects of hematocrit on blood flow properties using particle method,” Journal of Biomechanical Science and Engineering, vol. 1, no. 1, pp. 159–170, 2006.
  • G. Glowinski, T.-W. Pan, and J. Periaux, “A fictitious domain method for Dirichlet problem and applications,” Computer Methods in Applied Mechanics and Engineering, vol. 111, no. 3-4, pp. 283–303, 1994.
  • G. Glowinski, T.-W. Pan, and J. Periaux, “A fictitious domain method for external incompressible viscous flow modeled by Navier-Stokes equations,” Computer Methods in Applied Mechanics and Engineering, vol. 112, no. 1–4, pp. 133–148, 1994.
  • C. S. Peskin, “Numerical analysis of blood flow in the heart,” Journal of Computational Physics, vol. 25, no. 3, pp. 220–252, 1977.
  • T. Wang and Z. W. Xing, “Characterization of blood flow in capillaries by numerical simulation,” Journal of Modern Physics, vol. 1, no. 6, p. 349, 2010.