Journal of Applied Mathematics

Analysis of IVPs and BVPs on Semi-Infinite Domains via Collocation Methods

Mohammad Maleki, Ishak Hashim, and Saeid Abbasbandy

Full-text: Open access

Abstract

We study the numerical solutions to semi-infinite-domain two-point boundary value problems and initial value problems. A smooth, strictly monotonic transformation is used to map the semi-infinite domain x [ 0 , ) onto a half-open interval t [ 1 , 1 ) . The resulting finite-domain two-point boundary value problem is transcribed to a system of algebraic equations using Chebyshev-Gauss (CG) collocation, while the resulting initial value problem over a finite domain is transcribed to a system of algebraic equations using Chebyshev-Gauss-Radau (CGR) collocation. In numerical experiments, the tuning of the map ϕ : [ 1 , + 1 ) [ 0 , + ) and its effects on the quality of the discrete approximation are analyzed.

Article information

Source
J. Appl. Math., Volume 2012 (2012), Article ID 696574, 21 pages.

Dates
First available in Project Euclid: 14 December 2012

Permanent link to this document
https://projecteuclid.org/euclid.jam/1355495137

Digital Object Identifier
doi:10.1155/2012/696574

Mathematical Reviews number (MathSciNet)
MR2923364

Zentralblatt MATH identifier
1244.76067

Citation

Maleki, Mohammad; Hashim, Ishak; Abbasbandy, Saeid. Analysis of IVPs and BVPs on Semi-Infinite Domains via Collocation Methods. J. Appl. Math. 2012 (2012), Article ID 696574, 21 pages. doi:10.1155/2012/696574. https://projecteuclid.org/euclid.jam/1355495137


Export citation