## Institute of Mathematical Statistics Collections

- Collections
- Volume 8, 2012, 181-189

### Accurate approximations to the distribution of a statistic testing symmetry in contingency tables

John E. Kolassa and Hema Gayat Bhagavatula

#### Abstract

This manuscript examines this task of approximating significance levels for a test of symmetry in square contingency tables. The null sampling distribution of this test statistic is the same as that of the sum of squared independent centered binomial random variables, weighted by their separate sample size; each of these variables may be taken to have success probability half. This manuscript applies an existing asymptotic correction to the standard chi-squared approximation to the distribution of the quadratic form of a random vector confined to a multivariate lattice, when the quadratic form is formed from the inverse variance matrix of the random vector. This manuscript also investigates non-asymptotic corrections to approximations to this distribution, when the separate binomial sample sizes are small.

#### Chapter information

**Source***Contemporary Developments in Bayesian Analysis and Statistical Decision Theory: A Festschrift for William E. Strawderman* (Beachwood, Ohio, USA: Institute of Mathematical Statistics, 2012)

**Dates**

First available in Project Euclid: 14 March 2012

**Permanent link to this document**

https://projecteuclid.org/euclid.imsc/1331731619

**Digital Object Identifier**

doi:10.1214/11-IMSCOLL812

**Mathematical Reviews number (MathSciNet)**

MR3202510

**Zentralblatt MATH identifier**

1326.62033

**Subjects**

Primary: 62E17: Approximations to distributions (nonasymptotic) 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43]

Secondary: 62H17: Contingency tables

**Keywords**

conditional inference Bowker’s test of symmetry Yarnold approximation

**Rights**

Copyright © 2012, Institute of Mathematical Statistics

#### Citation

Kolassa, John E.; Bhagavatula, Hema Gayat. Accurate approximations to the distribution of a statistic testing symmetry in contingency tables. Contemporary Developments in Bayesian Analysis and Statistical Decision Theory: A Festschrift for William E. Strawderman, 181--189, Institute of Mathematical Statistics, Beachwood, Ohio, USA, 2012. doi:10.1214/11-IMSCOLL812. https://projecteuclid.org/euclid.imsc/1331731619

#### References

- Bhattacharya, R. N. and Rao, R. R. (1976). Normal Approximation and Asymptotic Expansions. Wiley.Mathematical Reviews (MathSciNet): MR436272
- Bowker, A. H. (1948). A Test for Symmetry in Contingency Tables.
*Journal of the American Statistical Association***43**572–574. - Kolassa, J. E. (2003). Continuity Correction for the Score Statistic in Discrete Regression Models. In
*Crossing Boundaries: Statistical Essays in Honor of Jack Hall*( J. E. Kolassa and D. Oakes, eds.) Institute of Mathematical Statistics, Hayward, CA.Mathematical Reviews (MathSciNet): MR2125052Zentralblatt MATH: 05499391Digital Object Identifier: doi:10.1214/lnms/1215092395 - Kolassa, J. E. (2006). Series Approximation Methods in Statistics, 3rd Edn. Springer – Verlag.Mathematical Reviews (MathSciNet): MR1295242
- Krampe, A. and Kuhnt, S. (2007). Bowker’s test for symmetry and modifications within the algebraic framework.
*Computational Statistics and Data Analysis***51**4124–4142.Mathematical Reviews (MathSciNet): MR2364434 - Ludbrook, J. (2008). Analysis of 2×2 tables of frequencies: matching test to experimental design.
*Int. J. Epidemiol.***37**1430–1435.Zentralblatt MATH: 0945.94004 - Oster, R. A. (2003). An Examination of Statistical Software Packages for Categorical Data Analysis Using Exact Methods-Part II.
*The American Statistician***57**201–213.Mathematical Reviews (MathSciNet): MR2542413Digital Object Identifier: doi:10.1198/0003130031928 - Oster, R. A. and Hilbe, J. M. (2008a). An Examination of Statistical Software Packages for Parametric and Nonparametric Data Analyses Using Exact Methods.
*The American Statistician***62**74–84.Mathematical Reviews (MathSciNet): MR2416901Digital Object Identifier: doi:10.1198/000313008X268955 - Oster, R. A. and Hilbe, J. M. (2008b). Rejoinder to “An Examination of Statistical Software Packages for Parametric and Nonparametric Data Analyses Using Exact Methods”.
*The American Statistician***62**173–176.Mathematical Reviews (MathSciNet): MR2416901Digital Object Identifier: doi:10.1198/000313008X268955 - SAS Institute Inc. (2010).
*SAS OnlineDoc 9.2: PDF Files, Second Edition*The FREQ Procedure. SAS Institute Inc., Cary, NC. - Yarnold, J. K. (1972). Asymptotic Approximations for the Probability that a Sum of Lattice Random Vectors Lies in a Convex Set.
*The Annals of Mathematical Statistics***43**1566–1580.Mathematical Reviews (MathSciNet): MR372967Zentralblatt MATH: 0256.62022Digital Object Identifier: doi:10.1214/aoms/1177692389Project Euclid: euclid.aoms/1177692389