Institute of Mathematical Statistics Collections
- Collections
- Volume 6, 2010, 249-262
Robust generalized Bayes minimax estimators of location vectors for spherically symmetric distributions with unknown scale
Dominique Fourdrinier and William E. Strawderman
Abstract
We consider estimation of the mean vector, θ, of a spherically symmetric distribution with unknown scale parameter σ under scaled quadratic loss. We show minimaxity of generalized Bayes estimators corresponding to priors of the form π(‖θ‖2)ηb where η = 1 / σ2, for π(⋅) superharmonic with a non decreasing Laplacian under conditions on b and weak moment conditions. Furthermore, these generalized Bayes estimators are independent of the underlying density and thus have the strong robustness property of being simultaneously generalized Bayes and minimax for the entire class of spherically symmetric distributions.
Chapter information
Source
Dates
First available in Project Euclid: 26 October 2010
Permanent link to this document
https://projecteuclid.org/euclid.imsc/1288099024
Digital Object Identifier
doi:10.1214/10-IMSCOLL617
Subjects
Primary: 62C10: Bayesian problems; characterization of Bayes procedures 62C20: Minimax procedures
Keywords
Bayes estimators minimax estimators spherically symmetric distributions location parameter scale parameter quadratic loss superharmonic priors
Rights
Copyright © 2010, Institute of Mathematical Statistics
Citation
Fourdrinier, Dominique; Strawderman, William E. Robust generalized Bayes minimax estimators of location vectors for spherically symmetric distributions with unknown scale. Borrowing Strength: Theory Powering Applications – A Festschrift for Lawrence D. Brown, 249--262, Institute of Mathematical Statistics, Beachwood, Ohio, USA, 2010. doi:10.1214/10-IMSCOLL617. https://projecteuclid.org/euclid.imsc/1288099024
References
- [1] Alam, K. (1973). A family of admissible minimax estimators of the mean of a multivariate normal distribution. Ann. Statist. 1 517–525.Mathematical Reviews (MathSciNet): MR353524Zentralblatt MATH: 0259.62007Digital Object Identifier: doi:10.1214/aos/1176342417Project Euclid: euclid.aos/1176342417
- [2] Brandwein, A. C. and Strawderman, W. E. (1980). Minimax estimation of location parameters for spherically symmetric distributions with concave loss. Ann. Statist. 8 279–284.Mathematical Reviews (MathSciNet): MR560729Zentralblatt MATH: 0432.62008Digital Object Identifier: doi:10.1214/aos/1176344953Project Euclid: euclid.aos/1176344953
- [3] Brandwein, A. C. and Strawderman, W. E. (1991). Generalizations of James-Stein estimators under spherical symmetry distributions with concave loss Ann. Statist. 19 1639–1650.Mathematical Reviews (MathSciNet): MR1126343Zentralblatt MATH: 0741.62058Digital Object Identifier: doi:10.1214/aos/1176348267Project Euclid: euclid.aos/1176348267
- [4] Cellier, D. and Fourdrinier, D. (1995). Shrinkage estimators under spherically symmetry for the general linear model. J. Multivariate Anal. 52 338–351.Mathematical Reviews (MathSciNet): MR1323338Zentralblatt MATH: 0814.62029Digital Object Identifier: doi:10.1006/jmva.1995.1018
- [5] Cellier, D., Fourdrinier, D. and Robert, C. (1989). Robust shrinkage estimators of the location parameter for elliptically symmetric distributions. J. Multivariate Anal. 29 39–52.Mathematical Reviews (MathSciNet): MR991055Zentralblatt MATH: 0678.62061Digital Object Identifier: doi:10.1016/0047-259X(89)90075-4
- [6] Chou, J. P. and Strawderman, W. E. (1990). Minimax estimation of means of multivariate normal mixtures. J. Multivariate Anal. 35 141–150.Mathematical Reviews (MathSciNet): MR1079664Zentralblatt MATH: 0706.62053Digital Object Identifier: doi:10.1016/0047-259X(90)90021-9
- [7] Faith, R. E. (1978). Minimax Bayes point estimators of a multivariate normal mean. J. Multivariate Anal. 8 372–379.Mathematical Reviews (MathSciNet): MR512607Zentralblatt MATH: 0411.62017Digital Object Identifier: doi:10.1016/0047-259X(78)90060-X
- [8] Fourdrinier, D., Kortbi, O. and Strawderman, W. E. (2008). Bayes minimax estimators of the mean of a scale mixture of multivariate normal distributions. J. Multivariate Anal. 99 1 74–93.Mathematical Reviews (MathSciNet): MR2408444Zentralblatt MATH: 05266934Digital Object Identifier: doi:10.1016/j.jmva.2006.06.012
- [9] Fourdrinier, D. and Strawderman, W. E. (2008). Generalized Bayes minimax estimators of location vector for spherically symmetric distributions. J. Multivariate Anal. 9 4 735–750.Mathematical Reviews (MathSciNet): MR2406080Digital Object Identifier: doi:10.1016/j.jmva.2007.03.007Zentralblatt MATH: 1140.62022
- [10] Fourdrinier, D. and Strawderman, W. E. (2008). A unified and generalized set of shrinkage bounds on minimax Stein estimates. J. Multivariate Anal. 99 10 2221–2233.Mathematical Reviews (MathSciNet): MR2463385Zentralblatt MATH: 1152.62005Digital Object Identifier: doi:10.1016/j.jmva.2008.02.015
- [11] Fourdrinier, D., Strawderman, W. E. and Wells, M. T. (1998). On the construction of Bayes minimax estimators. Ann. Statist. 26 2 660–671.Mathematical Reviews (MathSciNet): MR1626063Zentralblatt MATH: 0929.62004Digital Object Identifier: doi:10.1214/aos/1028144853Project Euclid: euclid.aos/1028144853
- [12] Fourdrinier, D., Strawderman, W. E. and Wells, M. T. (2003). Robust shrinkage estimation for elliptically symmetric distributions with unknown covariance matrix. J. Multivariate Anal. 85 24–39.Mathematical Reviews (MathSciNet): MR1978175Zentralblatt MATH: 1014.62061Digital Object Identifier: doi:10.1016/S0047-259X(02)00023-4
- [13] Fourdrinier, D., Strawderman, W. E. and Wells, M. T. (2006). Estimation of a location parameter with restrictions or “vague information” for spherically symmetric distributions. Ann. Inst. Statist. Math. 58 73–92.Mathematical Reviews (MathSciNet): MR2281207Digital Object Identifier: doi:10.1007/s10463-005-0001-0
- [14] Kubokawa, T. (1991). An approach to improving the James-Stein estimator. J. Multivariate Anal. 36 121–126.Mathematical Reviews (MathSciNet): MR1094273Zentralblatt MATH: 0733.62059Digital Object Identifier: doi:10.1016/0047-259X(91)90096-K
- [15] Maruyama, Y. (2003). A robust generalized Bayes estimator improving on the James-Stein estimator for spherically symmetric distributions. Statist. Decisions 21 69–78.Mathematical Reviews (MathSciNet): MR1985652
- [16] Maruyama, Y. (2003). Admissible minimax estimators of a mean vector of scale mixtures of multivariate normal distributions. J. Multivariate Anal. 84 274–283.Mathematical Reviews (MathSciNet): MR1965222Zentralblatt MATH: 1014.62063Digital Object Identifier: doi:10.1016/S0047-259X(02)00035-0
- [17] Maruyama, Y. and Strawderman, W. E. (2005). A new class of generalized Bayes minimax ridge regression estimators. Ann. Statist. 33 1753–1770.Mathematical Reviews (MathSciNet): MR2166561Zentralblatt MATH: 1078.62006Digital Object Identifier: doi:10.1214/009053605000000327Project Euclid: euclid.aos/1123250228
- [18] Maruyama, Y. and Takemura, A. (2008). Admissibility and minimaxity of generalized Bayes estimators for spherically symmetric family. J. Multivariate Anal. 99 50–73.Mathematical Reviews (MathSciNet): MR2408443Zentralblatt MATH: 1133.62002Digital Object Identifier: doi:10.1016/j.jmva.2007.01.002
- [19] Maruyama, Y. and Strawderman, W. E. (2009). An extended class of minimax generalized Bayes estimators of regression coefficients. J. Multivariate Anal. To appear.Mathematical Reviews (MathSciNet): MR2560360Zentralblatt MATH: 1176.62003Digital Object Identifier: doi:10.1016/j.jmva.2009.06.001
- [20] Stein, C. (1981). Estimation of the mean of multivariate normal distribution. Ann. Statist. 9 1135–1151.Mathematical Reviews (MathSciNet): MR630098Zentralblatt MATH: 0476.62035Digital Object Identifier: doi:10.1214/aos/1176345632Project Euclid: euclid.aos/1176345632
- [21] Strawderman, W. E. (1971). Proper Bayes minimax estimators of the multivariate normal mean. The Annals of Mathematical Statistics 42 385–388.Mathematical Reviews (MathSciNet): MR397939Zentralblatt MATH: 0222.62006Digital Object Identifier: doi:10.1214/aoms/1177693528Project Euclid: euclid.aoms/1177693528
- [22] Strawderman, W. E. (1973). Proper Bayes minimax estimators of the multivariate normal mean. Ann. Statist. 1 1189–1194.Mathematical Reviews (MathSciNet): MR365806Zentralblatt MATH: 0286.62007Digital Object Identifier: doi:10.1214/aos/1176342567Project Euclid: euclid.aos/1176342567
- [23] Strawderman, W. E. (1974). Minimax estimation of location parameters for certain spherically symmetric distributions. J. Multivariate Anal. 4 255–264.Mathematical Reviews (MathSciNet): MR362597Zentralblatt MATH: 0283.62036Digital Object Identifier: doi:10.1016/0047-259X(74)90032-3