Illinois Journal of Mathematics

On solvable subgroups of the Cremona group

Julie Déserti

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

The Cremona group $\operatorname{Bir}(\mathbb{P}^{2}_{\mathbb{C}})$ is the group of birational self-maps of $\mathbb{P}^{2}_{\mathbb{C}}$. Using the action of $\operatorname{Bir}(\mathbb{P}^{2}_{\mathbb{C}})$ on the Picard-Manin space of $\mathbb{P}^{2}_{\mathbb{C}}$, we characterize its solvable subgroups. If $\mathrm{G}\subset\operatorname{Bir}(\mathbb{P}^{2}_{\mathbb{C}})$ is solvable, nonvirtually Abelian, and infinite, then up to finite index: either any element of $\mathrm{G}$ is of finite order or conjugate to an automorphism of $\mathbb{P}^{2}_{\mathbb{C}}$, or $\mathrm{G}$ preserves a unique fibration that is rational or elliptic, or $\mathrm{G}$ is, up to conjugacy, a subgroup of the group generated by one hyperbolic monomial map and the diagonal automorphisms.

We also give some corollaries.

Article information

Source
Illinois J. Math., Volume 59, Number 2 (2015), 345-358.

Dates
Received: 9 April 2015
Revised: 3 February 2016
First available in Project Euclid: 5 May 2016

Permanent link to this document
https://projecteuclid.org/euclid.ijm/1462450705

Digital Object Identifier
doi:10.1215/ijm/1462450705

Mathematical Reviews number (MathSciNet)
MR3499516

Zentralblatt MATH identifier
1360.14041

Subjects
Primary: 14E07: Birational automorphisms, Cremona group and generalizations 14E05: Rational and birational maps

Citation

Déserti, Julie. On solvable subgroups of the Cremona group. Illinois J. Math. 59 (2015), no. 2, 345--358. doi:10.1215/ijm/1462450705. https://projecteuclid.org/euclid.ijm/1462450705


Export citation

References

  • J. Blanc, Conjugacy classes of affine automorphisms of $\Bbb K^n$ and linear automorphisms of $\Bbb P^n$ in the Cremona groups, Manuscripta Math. 119 (2006), no. 2, 225–241.
  • J. Blanc and S. Cantat, Dynamical degrees of birational transformations of projective surfaces, J. Amer. Math. Soc. 29 (2016), no. 2, 415–471.
  • J. Blanc and J. Déserti, Degree growth of birational maps of the plane, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 14 (2015), no. 2, 507–533.
  • M. R. Bridson and A. Haefliger, Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften, vol. 319, Springer-Verlag, Berlin, 1999.
  • S. Cantat, Dynamique des automorphismes des surfaces complexes compactes, Ph.D. thesis, École Normale Supérieure de Lyon, 1999.
  • S. Cantat, Sur les groupes de transformations birationnelles des surfaces, Ann. of Math. (2) 174 (2011), no. 1, 299–340.
  • S. Cantat, Morphisms between Cremona groups, and characterization of rational varieties, Compos. Math. 150 (2014), no. 7, 1107–1124.
  • S. Cantat and S. Lamy, Normal subgroups in the Cremona group, Acta Math. 210 (2013), no. 1, 31–94. With an appendix by Yves de Cornulier.
  • D. Cerveau and J. Déserti, Centralisateurs dans le groupe de Jonquières, Michigan Math. J. 61 (2012), no. 4, 763–783.
  • Y. Cornulier, Nonlinearity of some subgroups of the planar Cremona group, unpublished manuscript, 2013, http://www.normalesup.org/~cornulier/crelin.pdf.
  • P. de la Harpe, Topics in geometric group theory, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 2000.
  • T. Delzant and P. Py, Kähler groups, real hyperbolic spaces and the Cremona group, Compos. Math. 148 (2012), no. 1, 153–184. With an appendix by S. Cantat.
  • J. Déserti, Sur les automorphismes du groupe de Cremona, Compos. Math. 142 (2006), no. 6, 1459–1478.
  • J. Déserti, Sur les sous-groupes nilpotents du groupe de Cremona, Bull. Braz. Math. Soc. (N.S.) 38 (2007), no. 3, 377–388.
  • J. Diller and C. Favre, Dynamics of bimeromorphic maps of surfaces, Amer. J. Math. 123 (2001), no. 6, 1135–1169.
  • I. V. Dolgachev and V. A. Iskovskikh, Finite subgroups of the plane Cremona group, Algebra, arithmetic, and geometry: In honor of Yu. I. Manin. Vol. I, Progr. Math., vol. 269, Birkhäuser Boston, Inc., Boston, MA, 2009, pp. 443–548.
  • D. B. A. Epstein and W. P. Thurston, Transformation groups and natural bundles, Proc. Lond. Math. Soc. (3) 38 (1979), no. 2, 219–236.
  • C. Favre, Le groupe de Cremona et ses sous-groupes de type fini, Astérisque 332 (2010), Exp. no. 998, vii, 11–43. Séminaire Bourbaki. Volume 2008/2009. Exposés 997–1011.
  • É. Ghys and P. de la Harpe, eds., Sur les groupes hyperboliques d'après Mikhael Gromov, Progress in Mathematics, vol. 83, Birkhäuser Boston, Inc., Boston, MA, 1990. Papers from the Swiss Seminar on Hyperbolic Groups held in Bern, 1988.
  • M. H. Gizatullin, Rational $G$-surfaces, Izv. Akad. Nauk SSSR Ser. Mat. 44 (1980), no. 1, 110–144, 239.
  • A. Huckleberry and D. Zaitsev, Actions of groups of birationally extendible automorphisms, Geometric complex analysis (Hayama, 1995), World Sci. Publ., River Edge, NJ, 1996, pp. 261–285.
  • V. A. Iskovskikh and I. R. Shafarevich, Algebraic surfaces, Algebraic geometry, II, Encyclopaedia Math. Sci., vol. 35, Springer, Berlin, 1996, pp. 127–262.
  • M. I. Kargapolov and J. I. Merzljakov, Fundamentals of the theory of groups, Graduate Texts in Mathematics, vol. 62, Springer-Verlag, New York-Berlin, 1979. Translated from the second Russian edition by Robert G. Burns.
  • M. Martelo and J. Ribón, Derived length of solvable groups of local diffeomorphisms, Math. Ann. 358 (2014), no. 3–4, 701–728.
  • E. Souche, Quasi-isométrie et quasi-plans dans l'étude des groupes discrets, Ph.D. thesis, Université de Provence, 2001.
  • J. Tits, Free subgroups in linear groups, J. Algebra 20 (1972), 250–270.
  • A. Weil, On algebraic groups of transformations, Amer. J. Math. 77 (1955), 355–391.
  • D. Wright, Abelian subgroups of $\operatorname{Aut}_{k}(k[X, Y])$ and applications to actions on the affine plane, Illinois J. Math. 23 (1979), no. 4, 579–634.
  • D. Zaitsev, Regularization of birational group operations in the sense of Weil, J. Lie Theory 5 (1995), no. 2, 207–224.