Hokkaido Mathematical Journal

Laurent decomposition for harmonic and biharmonic functions in an infinite network

Madhu VENKATARAMAN

Full-text: Open access

Abstract

In this article we give a decomposition for harmonic functions in an infinite network X which is similar to the Laurent decomposition of harmonic functions defined on an annulus in ℝn, n ≥ 2. Also we give a decomposition for biharmonic functions on bihyperbolic infinite networks.

Article information

Source
Hokkaido Math. J., Volume 42, Number 3 (2013), 345-356.

Dates
First available in Project Euclid: 12 November 2013

Permanent link to this document
https://projecteuclid.org/euclid.hokmj/1384273386

Digital Object Identifier
doi:10.14492/hokmj/1384273386

Mathematical Reviews number (MathSciNet)
MR3137389

Zentralblatt MATH identifier
1278.31008

Subjects
Primary: 31A30: Biharmonic, polyharmonic functions and equations, Poisson's equation 31C20: Discrete potential theory and numerical methods

Keywords
Laurent decomposition in networks circled sets bihyperbolic networks

Citation

VENKATARAMAN, Madhu. Laurent decomposition for harmonic and biharmonic functions in an infinite network. Hokkaido Math. J. 42 (2013), no. 3, 345--356. doi:10.14492/hokmj/1384273386. https://projecteuclid.org/euclid.hokmj/1384273386


Export citation