Hiroshima Mathematical Journal

Caloric morphisms for rotation invariant metrics

Masaharu Nishio and Katsunori Shimomura

Full-text: Open access

Abstract

We determine all the caloric morphisms for rotation invariant (spherically symmetric) metrics, in the case where the space dimension is greater than two. We also treat the caloric morphisms on two dimensional spheres and hyperbolae.

Article information

Source
Hiroshima Math. J., Volume 40, Number 3 (2010), 315-331.

Dates
First available in Project Euclid: 8 December 2010

Permanent link to this document
https://projecteuclid.org/euclid.hmj/1291818847

Digital Object Identifier
doi:10.32917/hmj/1291818847

Mathematical Reviews number (MathSciNet)
MR2766663

Zentralblatt MATH identifier
1219.35120

Subjects
Primary: 35K99: None of the above, but in this section
Secondary: 31B99: None of the above, but in this section 35A30: Geometric theory, characteristics, transformations [See also 58J70, 58J72]

Keywords
Caloric morphism heat equation Appell transformation rotation invariant metric

Citation

Nishio, Masaharu; Shimomura, Katsunori. Caloric morphisms for rotation invariant metrics. Hiroshima Math. J. 40 (2010), no. 3, 315--331. doi:10.32917/hmj/1291818847. https://projecteuclid.org/euclid.hmj/1291818847


Export citation

References

  • M. Berger, Geometry I , Springer-Verlag, Berlin, 1987.
  • B. Fuglede, Harmonic morphisms between Riemannian manifolds , Ann. Inst. Fourier, Grenoble 28 (1978), 107--144.
  • B. Fuglede, Harmonic morphisms between semi-riemannian manifolds, Ann. Acad. Sci. Fenn. Math. 21 (1996), 31--50.
  • T. Ishihara, A mapping of Riemannian manifolds which preserves harmonic functions, J. Math. Kyoto Univ. 19 (1979), no. 2, 215--229.
  • H. Leutwiler, On Appell transformation, Potential theory, J. Král, J. Luke\u s, I. Netuka, J. Veselý eds., Plenum, New York, 1988, 215--222.
  • K. Shimomura, The determination of caloric morphisms on Euclidean domains, Nagoya Math. J. 158 (2000), 133--166.
  • M. Nishio, K. Shimomura, A characterization of caloric morphisms between manifolds, Ann. Acad. Sci. Fenn. Math. 28 (2003), 111--122
  • K. Shimomura, Caloric morphisms with respect to radial metrics on $\mathbb R^n \setminus \0\$, Math. J. Ibaraki Univ. 35 (2003), 35--53.
  • K. Shimomura, Caloric morphisms with respect to radial metrics on semi-euclidean spaces, Math. J. Ibaraki Univ. 37 (2005), 81--103.