Hiroshima Mathematical Journal

Evans potentials and the Riesz decomposition

Mitsuru Nakai

Full-text: Open access

Abstract

A superharmonic function $u$ on a parabolic Riemannian manifold $M$ is shown to admit the Riesz decomposition $u=h+(1/c_{d})\int_{M}e(\cdot,y)d\mu(y)$ on $M$ into the harmonic function $h$ on $M$ and the Evans potential of an Evans kernel $e(x,y)$ on $M$ and of the Borel measure $\mu:=-\Delta u\geqq 0$ on $M$ multiplied by a certain constant $1/c_{d}$ if and only if $m(t^{2},u)-2m(t,u)={\cal O}(1)\ (t\rightarrow+\infty)$, where $m(t,u)$ is the spherical mean over the sphere of radius $t$ all induced by the above chosen Evans kernel $e(x,y)$ on $M$.

Article information

Source
Hiroshima Math. J., Volume 38, Number 3 (2008), 455-469.

Dates
First available in Project Euclid: 28 January 2009

Permanent link to this document
https://projecteuclid.org/euclid.hmj/1233152782

Digital Object Identifier
doi:10.32917/hmj/1233152782

Mathematical Reviews number (MathSciNet)
MR2477754

Zentralblatt MATH identifier
1175.31002

Subjects
Primary: 31B05: Harmonic, subharmonic, superharmonic functions
Secondary: 31B15: Potentials and capacities, extremal length 31C12: Potential theory on Riemannian manifolds [See also 53C20; for Hodge theory, see 58A14]

Keywords
Evans kernel Evans potential Riesz decomposition

Citation

Nakai, Mitsuru. Evans potentials and the Riesz decomposition. Hiroshima Math. J. 38 (2008), no. 3, 455--469. doi:10.32917/hmj/1233152782. https://projecteuclid.org/euclid.hmj/1233152782


Export citation