Functiones et Approximatio Commentarii Mathematici

Sums of Fourth Powers of Polynomials over a~Finite Field of Characteristic 3

Mireille Car

Full-text: Open access

Abstract

Let $F$ be a finite field with $q$ elements and characteristic $3.$ A sum $$M = M_{1}^4+\ldots+ M_{s}^4$$ of fourth powers of polynomials $M_1,\dots, M_{s}$ is a strict one if $ 4\deg M_i < 4 + \deg M$ for each $i= 1,\ldots, s.$ Our main results are: Let $P\in F[T]$ of degree $\geq 329.$ If $q>81$ is congruent to $1$ (mod. $4$), then $P$ is the strict sum of $9$ fourth powers; if $q=81$ or if $q>3$ is congruent to $3$ (mod $4$), then $P$ is the strict sum of $10$ fourth powers. If $q=3,$ every $P\in F[T]$ which is a sum of fourth powers is a strict sum of $12$ fourth powers, if $q=9,$ every $P\in F[T]$ which is a sum of fourth powers and whose degree is not divisible by $4$ is a strict sum of $8$ fourth powers; every $P\in F[T]$ which is a sum of fourth powers, whose degree is divisible by $4$ and whose leading coefficient is a fourth power is a strict sum of $7$ fourth powers.

Article information

Source
Funct. Approx. Comment. Math., Volume 38, Number 2 (2008), 195-220.

Dates
First available in Project Euclid: 19 December 2008

Permanent link to this document
https://projecteuclid.org/euclid.facm/1229696539

Mathematical Reviews number (MathSciNet)
MR2492856

Zentralblatt MATH identifier
1213.11195

Subjects
Primary: 11T55: Arithmetic theory of polynomial rings over finite fields
Secondary: 11P23

Keywords
Waring's problem Polynomials Finite Fields

Citation

Car, Mireille. Sums of Fourth Powers of Polynomials over a~Finite Field of Characteristic 3. Funct. Approx. Comment. Math. 38 (2008), no. 2, 195--220. https://projecteuclid.org/euclid.facm/1229696539


Export citation

References

  • R. Balasubramanian, J.-M. Deshouillers, F. Dress, Problème de Waring pour les bicarrés. I: schéma de la solution, C.R. Acad. Sci., Paris, Sér. I 303 (1986), 85-88.
  • N. Bourbaki, Eléments de mathématique, Fascicule XI, chap. 5, Hermann, Paris (3rd. Ed), 1973.
  • M. Car, New bounds on some parameters in the Waring problem for polynomials over a finite field, Contemporary Math, 461, (2008) 59-77.
  • M. Car, L. Gallardo, Sums of cubes of polynomials, Acta Arith. 112 (2004), 41-50
  • M. Car, L. Gallardo, Waring's problem for biquadrates over a finite field of odd characteristic, Funct. Approx. Comment. Math., 37.1 (2007), 39-50.
  • H. Davenport, On Waring's problem for fourth powers, Annals of Math. (2) 40, (1939), 731-747
  • J.-M. Deshouillers; K. Kawada and T. Wooley, On sums of sixteen biquadrates, Mem. Soc. Math. Fr (N.S) n$\,^\circ$ 100 (2005).
  • L. Gallardo, On the restricted Waring problem over $\F_2^n[t]$, Acta Arith. 42 (2000), 109-113.
  • C. Small, Sums of powers in large finite fields, Proc. Amer. Math. Soc. 65 (1977), 35-36.
  • M. R. Stein, Surjective stability in dimension $0$ for $K_2$ and related functors, Trans. Amer. Math. Soc. 178 (1973), 165-191.