Electronic Journal of Statistics

Analysis of AneuRisk65 data: Internal carotid artery shape analysis

Wen Cheng, Ian L. Dryden, David B. Hitchcock, and Huiling Le

Full-text: Open access

Abstract

The AneuRisk65 data are analysed using methodology from statistical shape analysis. The internal carotid arteries are aligned using translation and rotation in three dimensions, together with shifts of the abscissa coordinate. Spline interpolation and weighted Procrustes methods are used to estimate the mean size-and-shapes in each of the six groups. Differences in torsion and curvature of the group means are highlighted, and permutation and bootstrap tests confirm there is weak evidence for differences in shape between the upper aneurysm group compared to the others. Finally shape variability, analysis of mean radii and classification are explored.

Article information

Source
Electron. J. Statist., Volume 8, Number 2 (2014), 1905-1913.

Dates
First available in Project Euclid: 29 October 2014

Permanent link to this document
https://projecteuclid.org/euclid.ejs/1414588178

Digital Object Identifier
doi:10.1214/14-EJS938B

Mathematical Reviews number (MathSciNet)
MR3273610

Zentralblatt MATH identifier
1305.62329

Keywords
Alignment bootstrap curvature permutation Procrustes registration shape size-and-shape torsion

Citation

Cheng, Wen; Dryden, Ian L.; Hitchcock, David B.; Le, Huiling. Analysis of AneuRisk65 data: Internal carotid artery shape analysis. Electron. J. Statist. 8 (2014), no. 2, 1905--1913. doi:10.1214/14-EJS938B. https://projecteuclid.org/euclid.ejs/1414588178


Export citation

References

  • Amaral, G. J. A., Dryden, I. L., and Wood, A. T. A. (2007). Pivotal bootstrap methods for $k$-sample problems in directional statistics and shape analysis., J. Amer. Statist. Assoc., 102(478):695–707.
  • Dryden, I. L. (2013)., shapes: Statistical shape analysis. R package version 1.1-9.
  • Dryden, I. L., Hirst, J. D., and Melville, J. L. (2007). Statistical analysis of unlabeled point sets: Comparing molecules in chemoinformatics., Biometrics, 63(1):237–251, 315.
  • Dryden, I. L. and Mardia, K. V. (1998)., Statistical Shape Analysis. Wiley, Chichester.
  • Goodall, C. R. (1991). Procrustes methods in the statistical analysis of shape (with discussion)., Journal of the Royal Statistical Society, Series B, 53:285–339.
  • Gower, J. C. (1975). Generalized Procrustes analysis., Psychometrika, 40:33–50.
  • Kendall, D. G. (1989). A survey of the statistical theory of shape (with discussion)., Statistical Science, 4:87–120.
  • Kent, J. T. and Mardia, K. V. (2001). Shape, Procrustes tangent projections and bilateral symmetry., Biometrika, 88(2):469–485.
  • Le, H.-L. (1995). Mean size-and-shapes and mean shapes: A geometric point of view., Advances in Applied Probability, 27:44–55.
  • Sangalli, L. M., Secchi, P., Vantini, S., and Veneziani, A. (2014). AneuRisk65: A dataset of three-dimensional cerebral vascular geometries., Electronic Journal of Statistics, 8:1879–1890, Special Section on Statistics of Time Warpings and Phase Variations.
  • Srivastava, A., Klassen, E., Joshi, S. H., and Jermyn, I. H. (2011). Shape analysis of elastic curves in Euclidean spaces., IEEE Trans. Pattern Anal. Mach. Intell, 33(7):1415–1428.

See also

  • Related item: Sangalli, L. M., Secchi, P., Vantini, S. (2014). AneuRisk65: A dataset of three-dimensional cerebral vascular geometries. Electron. J. Statist. 8 1879–1890.