Electronic Journal of Probability

The Schrödinger equation with spatial white noise potential

Arnaud Debussche and Hendrik Weber

Full-text: Open access

Abstract

We consider the linear and nonlinear Schrödinger equation with a spatial white noise as a potential over the two dimensional torus. We prove existence and uniqueness of solutions to an initial value problem for suitable initial data. Our construction is based on a change of unknown originally used in [13] and conserved quantities.

Article information

Source
Electron. J. Probab., Volume 23 (2018), paper no. 28, 16 pp.

Dates
Received: 12 December 2016
Accepted: 16 January 2018
First available in Project Euclid: 30 March 2018

Permanent link to this document
https://projecteuclid.org/euclid.ejp/1522375268

Digital Object Identifier
doi:10.1214/18-EJP143

Zentralblatt MATH identifier
1387.60097

Subjects
Primary: 60H15: Stochastic partial differential equations [See also 35R60] 35Q55: NLS-like equations (nonlinear Schrödinger) [See also 37K10]

Keywords
nonlinear Schrödinger equation spatial white noise renormalization

Rights
Creative Commons Attribution 4.0 International License.

Citation

Debussche, Arnaud; Weber, Hendrik. The Schrödinger equation with spatial white noise potential. Electron. J. Probab. 23 (2018), paper no. 28, 16 pp. doi:10.1214/18-EJP143. https://projecteuclid.org/euclid.ejp/1522375268


Export citation

References

  • [1] R. Allez and K. Chouk, The continuous Anderson Hamiltonian in dimension two, arXiv:1511.02718v2.
  • [2] H. Bahouri, J.-Y. Chemin and R. Danchin, Fourier analysis and nonlinear partial differential equations, vol. 343 of Grundlehren der Mathematischen Wissenschaften. Springer, Heidelberg, 2011.
  • [3] J. Bourgain Invariant measures for the 2D-defocusing nonlinear Schrödinger equation, Comm. Math. Phys. 176 (1996), no. 2, pp. 421–445
  • [4] J. Bourgain, Refinements of Strichartz inequality and applications to 2D-NLS with critical nonlinearity, IMRN, 5, p. 253–283, 1998.
  • [5] H. Brezis and T. Gallouet Nonlinear Schrödinger evolution equations, Nonlinear Analysis, Theory, Methods & Applications, vol. 4, no 4, pp. 677–681.
  • [6] T. Cazenave, Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics, American Mathematical Society, Courant Institute of Mathematical Sciences, 2003.
  • [7] T. Cazenave and A. Haraux, An introduction to semilinear evolution equations, Oxford Lecture Series in Mathematics and its Applications, 1998.
  • [8] H. Chihara, Gain of regularity for semilinear Schrödinger equations, Math. Ann. 315, no. 4, p. 529–567, 1999.
  • [9] C. Conti, Solitonization of the Anderson localization, Phys. Rev. A, 86, 2012.
  • [10] M. B. Erdogan and N. Tzirakis, Talbot effect for the cubic nonlinear Schrödinger equation on the torus, Math. Res. Let., 20, no. 6, p. 1081–1090, 2013.
  • [11] M. B. Erdogan, T. B. Gurel and N. Tzirakis, Smoothing for the fractional Schrödinger equation on the torus and the real line, arXiv:1703.00946
  • [12] N. Ghofraniha, S. Gentilini, V. Folli, E. DelRe and C. Conti, Shock waves in disordered media, Phys. Rev. Letter, 109, 2012.
  • [13] M. Hairer and C. Labbé, A simple construction of the continuum parabolic anderson model on $\mathbb{R} ^2$. Electron. Commun. Probab. 20 (2015), no. 43, pp. 1–11
  • [14] A. Ionescu and C.E. Kenig, Well-posedness and local smoothing of solutions of Schrödinger equations, Math. Res. Lett. 12, no. 2–3, p. 193–205, 2005.
  • [15] T. Kappeler, B. Schaad, and P. Topalov, Scattering-like phenomena of the periodic defocusing NLS equation, preprint, arXiv:1505.07394.
  • [16] C.E. Kenig, G. Ponce and L. Vega, Smoothing effects and local existence theory for the generalized nonlinear Schrödinger equations, Invent. Math. 134, no. 3, p. 489–545, 1998.
  • [17] S. Keraani and A. Vargas A smoothing property for the $L^2$ critical NLS equations and an application to blowup theory, Annales de l’Institut Henri Poincare (C) Non Linear Analysis Volume 26, Issue 3, p. 745–762, 2009.
  • [18] H. Mizutani, Global-in-time smoothing effects for Schrödinger equations with inverse- square potentials, Proc. Amer. Math. Soc. 146, no. 1, p. 295–307, 2018.