Electronic Communications in Probability

Extremal decomposition for random Gibbs measures: from general metastates to metastates on extremal random Gibbs measures

Codina Cotar, Benedikt Jahnel, and Christof Külske

Full-text: Open access

Abstract

The concept of metastate measures on the states of a random spin system was introduced to be able to treat the large-volume asymptotics for complex quenched random systems, like spin glasses, which may exhibit chaotic volume dependence in the strong-coupling regime. We consider the general issue of the extremal decomposition for Gibbsian specifications which depend measurably on a parameter that may describe a whole random environment in the infinite volume. Given a random Gibbs measure, as a measurable map from the environment space, we prove measurability of its decomposition measure on pure states at fixed environment, with respect to the environment. As a general corollary we obtain that, for any metastate, there is an associated decomposition metastate, which is supported on the extremes for almost all environments, and which has the same barycenter.

Article information

Source
Electron. Commun. Probab., Volume 23 (2018), paper no. 95, 12 pp.

Dates
Received: 17 October 2018
Accepted: 27 November 2018
First available in Project Euclid: 18 December 2018

Permanent link to this document
https://projecteuclid.org/euclid.ecp/1545102491

Digital Object Identifier
doi:10.1214/18-ECP200

Mathematical Reviews number (MathSciNet)
MR3896833

Zentralblatt MATH identifier
07023481

Subjects
Primary: 82B44: Disordered systems (random Ising models, random Schrödinger operators, etc.) 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43]

Keywords
Gibbs measures disordered systems extremal decomposition metastates

Rights
Creative Commons Attribution 4.0 International License.

Citation

Cotar, Codina; Jahnel, Benedikt; Külske, Christof. Extremal decomposition for random Gibbs measures: from general metastates to metastates on extremal random Gibbs measures. Electron. Commun. Probab. 23 (2018), paper no. 95, 12 pp. doi:10.1214/18-ECP200. https://projecteuclid.org/euclid.ecp/1545102491


Export citation

References

  • [ADNS10] Louis-Pierre Arguin, Michael Damron, Charles Newman, and Daniel Stein. Uniqueness of ground states for short-range spin glasses in the half-plane. Comm. Math. Phys., 300(3):641–657, 2010.
  • [ANS18] Louis-Pierre Arguin, Charles Newman, and Daniel Stein. A relation between disorder chaos and incongruent states in spin glasses on $ \mathbb Z^d$. arXiv preprint arXiv:1803.02308, 2018.
  • [AP18] Michael Aizenman and Ron Peled. A power-law upper bound on the correlations in the 2d random field Ising model. arXiv preprint arXiv:1808.08351, 2018.
  • [ASZ18] Gérard Ben Arous, Eliran Subag, and Ofer Zeitouni. Geometry and temperature chaos in mixed spherical spin glasses at low temperature-the perturbative regime. arXiv preprint arXiv:1804.10573, 2018.
  • [AW90] Michael Aizenman and Jan Wehr. Rounding effects of quenched randomness on first-order phase transitions. Comm. Math. Phys., 130(3):489–528, 1990.
  • [BK88] Jean Bricmont and Antti Kupiainen. Phase transition in the 3d random field Ising model. Comm. Math. Phys., 116(4):539–572, 1988.
  • [BK07] Marek Biskup and Roman Kotecký. Phase coexistence of gradient Gibbs states. Probab. Theory Related Fields, 139(1-2):1–39, 2007.
  • [Bov06] Anton Bovier. Statistical mechanics of disordered systems: a mathematical perspective, volume 18. Cambridge University Press, 2006.
  • [CH10] Jean-René Chazottes and Michael Hochman. On the zero-temperature limit of Gibbs states. Comm. Math. Phys., 297(1):265–281, 2010.
  • [CK12] Codina Cotar and Christof Külske. Existence of random gradient states. Ann. Appl. Probab., 22(4):1650–1692, 2012.
  • [CK15] Codina Cotar and Christof Külske. Uniqueness of gradient Gibbs measures with disorder. Probab. Theory Related Fields, 162(3-4):587–635, 2015.
  • [CRL15] Daniel Coronel and Juan Rivera-Letelier. Sensitive dependence of Gibbs measures at low temperatures. J. Stat. Phys., 160(6):1658–1683, 2015.
  • [Föl75] Hans Föllmer. Phase transition and Martin boundary. In Séminaire de Probabilités IX Université de Strasbourg, volume 465, pages 305–317, Berlin, Heidelberg, 1975.
  • [FS97] Tadahisa Funaki and Herbert Spohn. Motion by mean curvature from the Ginzburg-Landau $\nabla \phi $ interface model. Comm. Math. Phys., 185(1):1–36, 1997.
  • [Geo11] Hans-Otto Georgii. Gibbs measures and phase transitions, volume 9. Walter de Gruyter & Co., Berlin, second edition, 2011.
  • [IK10] Giulio Iacobelli and Christof Külske. Metastates in finite-type mean-field models: visibility, invisibility, and random restoration of symmetry. J. Stat. Phys., 140(1):27–55, 2010.
  • [Kle13] Achim Klenke. Probability theory: a comprehensive course. Universitext. Springer London, 2013.
  • [Kül97] Christof Külske. Metastates in disordered mean-field models: random field and Hopfield models. J. Stat. Phys., 88(5-6):1257–1293, 1997.
  • [NS97] Charles Newman and Daniel Stein. Metastate approach to thermodynamic chaos. Phys. Rev. E (3), 55(5, part A):5194–5211, 1997.
  • [NS98] Charles Newman and Daniel Stein. Thermodynamic chaos and the structure of short-range spin glasses. In Mathematical aspects of spin glasses and neural networks, volume 41 of Progr. Probab., pages 243–287. Birkha̋user Boston, Boston, MA, 1998.
  • [NS13] Charles Newman and Daniel Stein. Spin glasses and complexity. Princeton University Press, 2013.
  • [vEK08] Aernout van Enter and Christof Külske. Nonexistence of random gradient Gibbs measures in continuous interface models in $d=2$. Ann. Appl. Probab., 18(1):109–119, 2008.
  • [vER07] Aernout van Enter and Wioletta Ruszel. Chaotic temperature dependence at zero temperature. J. Stat. Phys., 127(3):567–573, 2007.
  • [WMK15] Wenlong Wang, Jonathan Machta, and Helmut Katzgraber. Chaos in spin glasses revealed through thermal boundary conditions. Physical Review B, 92(9):094410, 2015.