Electronic Communications in Probability

Fractional smoothness of functionals of diffusion processes under a change of measure

Stefan Geiss and Emmanuel Gobet

Full-text: Open access

Abstract

Let $v:[0,T]\times {\mathbf R}^d \to {\mathbf R}$ be the solution of the parabolic backward equation $$\partial_t v + (1/2) \sum_{i,j} [\sigma \sigma^\top]_{i,j} \partial_{x_i}\partial_{x_j}v+ \sum_{i} b_i \partial_{x_i}v + kv =0$$ with terminal condition $g$, where the coefficients are time-and state-dependent, and satisfy certain regularity assumptions. Let $X = (X_t)_{t\in [0,T]}$ be the associated ${\mathbf R}^d$-valued diffusion process on some appropriate $(\Omega,{\mathcal F},{\mathbb Q})$. For $p\in [2,\infty)$ and a measure $d{\mathbb P}=\lambda_T d{\mathbb Q}$, where $\lambda_T$ satisfies the Muckenhoupt condition $A_p$, we relate the behavior of \[  \|g(X_T)-{\mathbf E}_{\mathbb P}(g(X_T)|{\mathcal F}_t) \|_{L_p({\mathbb P})}, \quad  \|\nabla v(t,X_t)  \|_{L_p({\mathbb P})}, \quad \|D^2 v(t,X_t)  \|_{L_p({\mathbb P})} \]to each other, where $D^2v:=(\partial_{x_i}\partial_{x_j}v)_{i,j}$ is the Hessian matrix.

Article information

Source
Electron. Commun. Probab., Volume 19 (2014), paper no. 35, 14 pp.

Dates
Accepted: 13 June 2014
First available in Project Euclid: 7 June 2016

Permanent link to this document
https://projecteuclid.org/euclid.ecp/1465316737

Digital Object Identifier
doi:10.1214/ECP.v19-2786

Mathematical Reviews number (MathSciNet)
MR3225866

Zentralblatt MATH identifier
06349193

Subjects
Primary: 60H30: Applications of stochastic analysis (to PDE, etc.)
Secondary: 46B70: Interpolation between normed linear spaces [See also 46M35] 35K10: Second-order parabolic equations 35Bxx: Qualitative properties of solutions

Keywords
Parabolic PDE Qualitative properties of solutions Diffusion Interpolation

Rights
This work is licensed under a Creative Commons Attribution 3.0 License.

Citation

Geiss, Stefan; Gobet, Emmanuel. Fractional smoothness of functionals of diffusion processes under a change of measure. Electron. Commun. Probab. 19 (2014), paper no. 35, 14 pp. doi:10.1214/ECP.v19-2786. https://projecteuclid.org/euclid.ecp/1465316737


Export citation

References

  • Avikainen, Rainer. On irregular functionals of SDEs and the Euler scheme. Finance Stoch. 13 (2009), no. 3, 381–401.
  • Bonami, Aline; Lépingle, Dominique. Fonction maximale et variation quadratique des martingales en présence d'un poids. (French) Séminaire de Probabilités, XIII (Univ. Strasbourg, Strasbourg, 1977/78), pp. 294–306, Lecture Notes in Math., 721, Springer, Berlin, 1979.
  • Friedman, Avner. Partial differential equations of parabolic type. Prentice-Hall, Inc., Englewood Cliffs, N.J. 1964 xiv+347 pp.
  • Geiss, Christel; Geiss, Stefan. On approximation of a class of stochastic integrals and interpolation. Stoch. Stoch. Rep. 76 (2004), no. 4, 339–362.
  • Geiss, Christel; Geiss, Stefan; Gobet, Emmanuel. Generalized fractional smoothness and $L_ p$-variation of BSDEs with non-Lipschitz terminal condition. Stochastic Process. Appl. 122 (2012), no. 5, 2078–2116.
  • Geiss, Stefan; Hujo, Mika. Interpolation and approximation in $L_ 2(\gamma)$. J. Approx. Theory 144 (2007), no. 2, 213–232.
  • Gobet, Emmanuel; Munos, Rémi. Sensitivity analysis using Itô-Malliavin calculus and martingales, and application to stochastic optimal control. SIAM J. Control Optim. 43 (2005), no. 5, 1676–1713 (electronic).
  • Gobet, Emmanuel; Makhlouf, Azmi. ${\bf L}_ 2$-time regularity of BSDEs with irregular terminal functions. Stochastic Process. Appl. 120 (2010), no. 7, 1105–1132.
  • Gobet, Emmanuel; Makhlouf, Azmi. The tracking error rate of the delta-gamma hedging strategy. Math. Finance 22 (2012), no. 2, 277–309.
  • Gobet, Emmanuel; Temam, Emmanuel. Discrete time hedging errors for options with irregular payoffs. Finance Stoch. 5 (2001), no. 3, 357–367.
  • Geiss, Stefan; Toivola, Anni. Weak convergence of error processes in discretizations of stochastic integrals and Besov spaces. Bernoulli 15 (2009), no. 4, 925–954.
  • S. Geiss and A. Toivola. On fractional smoothness and L_p-approximation on the Wiener space. arXiv:1206.5415, 2012. To appear in Annals Prob. as "On fractional smoothness and L_p-approximation on the Gaussian space".
  • Imkeller, Peter; Dos Reis, Goncalo. Path regularity and explicit convergence rate for BSDE with truncated quadratic growth. Stochastic Process. Appl. 120 (2010), no. 3, 348–379.
  • Izumisawa, M.; Kazamaki, N. Weighted norm inequalities for martingales. Tôhoku Math. J. (2) 29 (1977), no. 1, 115–124.
  • Kazamaki, Norihiko. Continuous exponential martingales and BMO. Lecture Notes in Mathematics, 1579. Springer-Verlag, Berlin, 1994. viii+91 pp. ISBN: 3-540-58042-5
  • Kunita, Hiroshi. Stochastic flows and stochastic differential equations. Reprint of the 1990 original. Cambridge Studies in Advanced Mathematics, 24. Cambridge University Press, Cambridge, 1997. xiv+346 pp. ISBN: 0-521-35050-6; 0-521-59925-3
  • Protter, Philip E. Stochastic integration and differential equations. Second edition. Applications of Mathematics (New York), 21. Stochastic Modelling and Applied Probability. Springer-Verlag, Berlin, 2004. xiv+415 pp. ISBN: 3-540-00313-4