Duke Mathematical Journal

Cubulating hyperbolic free-by-cyclic groups: The irreducible case

Mark F. Hagen and Daniel T. Wise

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

Let V be a finite graph, and let ϕ:VV be an irreducible train track map whose mapping torus has word-hyperbolic fundamental group G. Then G acts freely and cocompactly on a CAT(0) cube complex. Hence, if F is a finite-rank free group and if Φ:FF is an irreducible monomorphism so that G=FΦ is word-hyperbolic, then G acts freely and cocompactly on a CAT(0) cube complex. This holds, in particular, if Φ is an irreducible automorphism with G=FΦZ word-hyperbolic.

Article information

Source
Duke Math. J., Volume 165, Number 9 (2016), 1753-1813.

Dates
Received: 8 November 2013
Revised: 17 August 2015
First available in Project Euclid: 24 March 2016

Permanent link to this document
https://projecteuclid.org/euclid.dmj/1458829437

Digital Object Identifier
doi:10.1215/00127094-3450752

Mathematical Reviews number (MathSciNet)
MR3320891

Zentralblatt MATH identifier
06603541

Subjects
Primary: 20F65: Geometric group theory [See also 05C25, 20E08, 57Mxx]
Secondary: 57M20: Two-dimensional complexes

Keywords
free-by-cyclic group $\operatorname{CAT}(0)$ cube complex train track map train-track map

Citation

Hagen, Mark F.; Wise, Daniel T. Cubulating hyperbolic free-by-cyclic groups: The irreducible case. Duke Math. J. 165 (2016), no. 9, 1753--1813. doi:10.1215/00127094-3450752. https://projecteuclid.org/euclid.dmj/1458829437


Export citation

References

  • [1] I. Agol, The virtual Haken conjecture, with an appendix by I. Agol, D. Groves, and J. Manning, Doc. Math. 18 (2013), 1045–1087.
  • [2] N. Bergeron and D. T. Wise, A boundary criterion for cubulation, Amer. J. Math. 134 (2012), 843–859.
  • [3] M. Bestvina and M. Feighn, A combination theorem for negatively curved groups, J. Differential Geom. 35 (1992), 85–101.
  • [4] M. Bestvina, M. Feighn, and M. Handel, Laminations, trees, and irreducible automorphisms of free groups, Geom. Funct. Anal. 7 (1997), 215–244.
  • [5] M. Bestvina, M. Feighn, and M. Handel, The Tits alternative for $Out({F}_{n})$, I: Dynamics of exponentially growing automorphisms, Ann. of Math. (2) 151 (2000), 517–623.
  • [6] M. Bestvina and M. Handel, Train tracks and automorphisms of free groups, Ann. of Math. (2) 135 (1992), 1–51.
  • [7] M. R. Bridson and A. Haefliger, Metric Spaces of Non-Positive Curvature, Grundlehren Math. Wiss. 319, Springer, Berlin, 1999.
  • [8] P. Brinkmann, Hyperbolic automorphisms of free groups, Geom. Funct. Anal. 10 (2000), 1071–1089.
  • [9] D. Cooper, D. D. Long, and A. W. Reid, Bundles and finite foliations, Invent. Math. 118 (1994), 255–283.
  • [10] W. Dicks and E. Ventura, The Group Fixed by a Family of Injective Endomorphisms of a Free Group, Contemp. Math. 195, Amer. Math. Soc., Providence, 1996.
  • [11] G. Dufour, Cubulations de variétés hyperboliques compactes, Ph.D. dissertation, Université Paris-Sud, Paris, France, 2012.
  • [12] D. Gaboriau, A. Jaeger, G. Levitt, and M. Lustig, An index for counting fixed points of automorphisms of free groups, Duke Math. J. 93 (1998), 425–452.
  • [13] S. M. Gersten, The automorphism group of a free group is not a $\operatorname{CAT}(0)$ group, Proc. Amer. Math. Soc. 121 (1994), 999–1002.
  • [14] M. Gromov, “Hyperbolic groups” in Essays in Group Theory, Math. Sci. Res. Inst. Publ. 8, Springer, New York, 1987, 75–263.
  • [15] M. F. Hagen and D. T. Wise, Cubulating hyperbolic free-by-cyclic groups: The general case, Geom. Funct. Anal. 25 (2015), 134–179.
  • [16] F. Haglund and D. T. Wise, Special cube complexes, Geom. Funct. Anal. 17 (2008), 1551–1620.
  • [17] G. C. Hruska and D. T. Wise, Finiteness properties of cubulated groups, Compos. Math. 150 (2014), 453–506.
  • [18] T. Hsu and D. T. Wise, Cubulating malnormal amalgams, Invent. Math. 199 (2015), 293–331.
  • [19] I. Kapovich, Mapping tori of endomorphisms of free groups, Comm. Algebra 28 (2000), 2895–2917.
  • [20] M. Kapovich and B. Leeb, On asymptotic cones and quasi-isometry classes of fundamental groups of $3$-manifolds, Geom. Funct. Anal. 5 (1995), 582–603.
  • [21] G. Levitt, Counting growth types of automorphisms of free groups, Geom. Funct. Anal. 19 (2009), 1119–1146.
  • [22] M. Mitra, On a theorem of Scott and Swarup, Proc. Amer. Math. Soc. 127 (1999), 1625–1631.
  • [23] P. Przytycki and D. T. Wise, Mixed $3$-manifolds are virtually special, preprint, arXiv:1205.6742v2 [math.GR].
  • [24] P. R. Reynolds, Dynamics of irreducible endomorphisms of ${F}_{n}$, preprint, arXiv:1008.3659v3 [math.GR].
  • [25] M. Sageev, Ends of group pairs and non-positively curved cube complexes, Proc. Lond. Math. Soc. (3) 71 (1995), 585–617.
  • [26] G. P. Scott and G. A. Swarup, Geometric finiteness of certain Kleinian groups, Proc. Amer. Math. Soc. 109 (1990), 765–768.
  • [27] D. T. Wise, Cubular tubular groups, Trans. Amer. Math. Soc. 366, no. 10 (2014), 5503–5521.