Duke Mathematical Journal

Sur la non-densité des points entiers

Pascal Autissier

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


On donne des résultats de non-densité pour les points entiers sur des variétés affines, dans l'esprit de la conjecture de Lang-Vojta. En particulier, soit X une variété projective de dimension d2 sur un corps de nombres K (resp., sur C). Soit H la somme de 2d diviseurs amples sur X qui se coupent proprement. On montre que tout ensemble de points quasi-entiers (resp., toute courbe entière) sur XH est non Zariski-dense.


We give nondensity results for integral points on affine varieties, in the spirit of the Lang-Vojta conjecture. In particular, let X be a projective variety of dimension d2 over a number field K (resp., over C). Let H be the sum of 2d properly intersecting ample divisors on X. We show that any set of quasi-integral points (resp., any integral curve) on XH is not Zariski-dense.

Article information

Duke Math. J., Volume 158, Number 1 (2011), 13-27.

First available in Project Euclid: 3 May 2011

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 14G25: Global ground fields
Secondary: 11J97: Analogues of methods in Nevanlinna theory (work of Vojta et al.) 11G35: Varieties over global fields [See also 14G25]


Autissier, Pascal. Sur la non-densité des points entiers. Duke Math. J. 158 (2011), no. 1, 13--27. doi:10.1215/00127094-1276292. https://projecteuclid.org/euclid.dmj/1304429492

Export citation


  • P. Autissier, Géométrie, points entiers et courbes entières, Ann. Sci. Éc. Norm. Supér. (4) 42 (2009), 221–239.
  • P. Corvaja, A. Levin et U. Zannier, Integral points on threefolds and other varieties, Tohoku Math. J. 61 (2009), 589–601.
  • P. Corvaja et U. Zannier, A subspace theorem approach to integral points on curves, C. R. Math. Acad. Sci. Paris 334 (2002), 267–271.
  • —, On integral points on surfaces, Ann. of. Math. (2) 160 (2004), 705–726.
  • W. Fulton, Intersection Theory, 2nd ed., Ergeb. Math. Grenzgeb. 3, Springer, Berlin, 1998.
  • S. Lang, Number Theory, III: Diophantine Geometry, Encyclopaedia Math. Sci. 60, Springer, Berlin, 1991.
  • R. Lazarsfeld, Positivity in Algebraic Geometry, I: Classical Setting–-Line Bundles and Linear Series, Ergeb. Math. Grenzgeb. 48, Springer, Berlin, 2004.
  • A. Levin, Generalizations of Siegel's and Picard's theorems, Ann. of Math. (2) 170 (2009), 609–655.
  • H. Matsumura, Commutative Algebra, 2nd ed., Math. Lecture Note Ser. 56, Benjamin/Cummings, Reading, Mass., 1980.
  • H. P. Schlickewei, The $p$-adic Thue-Siegel-Roth-Schmidt theorem, Arch. Math. (Basel) 29 (1977), 267–270.
  • W. M. Schmidt, Diophantine approximation, Lecture Notes in Math. 785, Springer Berlin, 1980.
  • J.-P. Serre, Lectures on the Mordell-Weil Theorem, 3rd ed., Aspects Math., Friedr. Vieweg and Sons, Braunschweig, 1997.
  • P. Vojta, Diophantine Approximations and Value Distribution Theory, Lecture Notes in Math. 1239, Springer, Berlin, 1987.
  • —, A refinement of Schmidt's subspace theorem, Amer. J. Math. 111 (1989), 489–518.
  • —, Integral points on subvarieties of semiabelian varieties, I, Invent. Math. 126 (1996), 133–181.
  • —, On Cartan's theorem and Cartan's conjecture, Amer. J. Math. 119 (1997), 1–17.
  • S. Zhang, Small points and adelic metrics, J. Algebraic Geom. 4 (1995), 281–300.