Duke Mathematical Journal

Deformation of rank 2 quasi-bundles and some strange dualities for rational surfaces

Takeshi Abe

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We study a deformation theory of μ-semistable quasi-bundles of rank 2 on a polarized surface (X,O(1)) such that (O(1)·KX)<0, and we apply it to strange dualities for some rational surfaces.

Article information

Source
Duke Math. J., Volume 155, Number 3 (2010), 577-620.

Dates
First available in Project Euclid: 16 November 2010

Permanent link to this document
https://projecteuclid.org/euclid.dmj/1289916773

Digital Object Identifier
doi:10.1215/00127094-2010-063

Mathematical Reviews number (MathSciNet)
MR2738583

Zentralblatt MATH identifier
1208.14034

Subjects
Primary: 14J60: Vector bundles on surfaces and higher-dimensional varieties, and their moduli [See also 14D20, 14F05, 32Lxx]
Secondary: 14D20: Algebraic moduli problems, moduli of vector bundles {For analytic moduli problems, see 32G13}

Citation

Abe, Takeshi. Deformation of rank $2$ quasi-bundles and some strange dualities for rational surfaces. Duke Math. J. 155 (2010), no. 3, 577--620. doi:10.1215/00127094-2010-063. https://projecteuclid.org/euclid.dmj/1289916773


Export citation

References

  • I. V. Artamkin, Deformation of torsion-free sheaves on an algebraic surface, Math. USSR-Izv. 36 (1991), no. 3, 449--485.
  • P. Belkale, The strange duality conjecture for generic curves, J. Amer. Math. Soc. 21 (2008), 235--258.
  • G. Danila, Sections du fibré déterminant sur l'espace de modules des faisceaux semi-stable de rang $2$ sur le plan projectif, Ann. Inst. Fourier (Grenoble) 50 (2000), 1323--1374.
  • —, Résultats sur la conjecture de dualité étrange sur le plan projectif, Bull. Soc. Math. France 130 (2002), 1--33.
  • D. Eisenbud, Commutative Algebra: With a View toward Algebraic Geometry, Grad. Texts in Math. 150, Springer, New York, 1995.
  • L. Göttsche, H. Nakajima, and K. Yoshioka, $K$-theoretic Donaldson invariants via instanton counting, Pure Appl. Math. Q. 5 (2009), 1029--1111.
  • A. Grothendieck and J. Dieudonné, Éléments de géométrie algébrique, III,: Étude cohomologique des faisceaux cohérents, I, Inst. Hautes Études Sci. Publ. Math. 11 (1961); 17 (1963).
  • —, Éléments de géométrie algébrique, IV: Étude locale des schémas et des morphismes de schémas, III, Inst. Hautes Études Sci. Publ. Math 20 (1964); 24 (1965); 28 (1966); 32 (1967).
  • R. Hartshorne, Residues and Duality, with an appendix by P. Deligne, Lecture Notes in Math. 20, Springer, Berlin, 1966.
  • F. F. Knudsen and D. Mumford, The projectivity of the moduli space of stable curves, I: Preliminaries on ``det'' and ``Div,'' Math. Scand. 39 (1976), 19--55.
  • J. Le Potier, Faisceaux semi-stables de dimension $1$ sur le plan projectif, Rev. Roumaine Math. Pures Appl. 38 (1993), 635--678.
  • —, Lectures on Vector Bundles, Cambridge Stud. Adv. Math. 54, Cambridge Univ. Press, Cambridge, 1997.
  • A. Marian and D. Oprea, The level-rank duality for non-abelian theta functions, Invent. Math. 168 (2007), 225--247.
  • —, ``A tour of theta dualities on moduli spaces of sheaves'' in Curves and Abelian Varieties, Contemp. Math. 465, Amer. Math. Soc., Providence, 2008, 175--201.
  • —, Sheaves on abelian surfaces and strange duality, Math. Ann. 343 (2009), 1--33.
  • —, On the strange duality conjecture for elliptic K3 surfaces, preprint.
  • H. Matsumura, Commutative Algebra, Benjamin, New York, 1970.
  • M. Popa, Generalized theta linear series on moduli spaces of vector bundles on curves.
  • M. Schlessinger, Functors of Artin rings, Trans. Amer. Math. Soc. 130 (1968), 208--222.
  • C. Walter, ``Irreducibility of moduli spaces of vector bundles on birationally ruled surfaces'' in Algebraic Geometry (Catania, 1993/Barcelona, 1994), Lecture Notes in Pure and Appl. Math. 200, Dekker, New York, 1998, 201--211.