Duke Mathematical Journal
- Duke Math. J.
- Volume 57, Number 1 (1988), 221-273.
Sur les varietes abeliennes dont le diviseur theta est singulier en codimension
Full-text: Access denied (no subscription detected)
We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text
Article information
Source
Duke Math. J., Volume 57, Number 1 (1988), 221-273.
Dates
First available in Project Euclid: 20 February 2004
Permanent link to this document
https://projecteuclid.org/euclid.dmj/1077306857
Digital Object Identifier
doi:10.1215/S0012-7094-88-05711-0
Mathematical Reviews number (MathSciNet)
MR952234
Zentralblatt MATH identifier
0699.14058
Subjects
Primary: 14K10: Algebraic moduli, classification [See also 11G15]
Secondary: 14H40: Jacobians, Prym varieties [See also 32G20]
Citation
Debarre, Olivier. Sur les varietes abeliennes dont le diviseur theta est singulier en codimension $3$. Duke Math. J. 57 (1988), no. 1, 221--273. doi:10.1215/S0012-7094-88-05711-0. https://projecteuclid.org/euclid.dmj/1077306857
References
- [ACGH] E. Arbarello, M. Cornalba, P. A. Griffiths, and J. Harris, Geometry of Algebraic Curves, I, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 267, Springer-Verlag, New York, 1985.
- [A-M] A. Andreotti and A. L. Mayer, On period relations for abelian integrals on algebraic curves, Ann. Scuola Norm. Sup. Pisa (3) 21 (1967), 189–238.
- [Ba] W. Barth, Fortsetzung, meromorpher Funktionen in Tori und komplex-projektiven Räumen, Invent. Math. 5 (1968), 42–62.Mathematical Reviews (MathSciNet): MR36:6646
Zentralblatt MATH: 0159.37602
Digital Object Identifier: doi:10.1007/BF01404537 - [Be 1] A. Beauville, Prym varieties and the Schottky problem, Invent. Math. 41 (1977), no. 2, 149–196.Mathematical Reviews (MathSciNet): MR58:27995
Zentralblatt MATH: 0333.14013
Digital Object Identifier: doi:10.1007/BF01418373 - [Be 2] A. Beauville, Variétés de Prym et jacobiennes intermédiaires, Ann. Sci. École Norm. Sup. (4) 10 (1977), no. 3, 309–391.
- [Be 3] A. Beauville, Sous-variétés spéciales des variétés de Prym, Compositio Math. 45 (1982), no. 3, 357–383.
- [B-D] A. Beauville and O. Debarre, Une relation entre deux approches du problème de Schottky, Invent. Math. 86 (1986), no. 1, 195–207.Mathematical Reviews (MathSciNet): MR87k:14031
Zentralblatt MATH: 0659.14021
Digital Object Identifier: doi:10.1007/BF01391500 - [D-M] P. Deligne and D. Mumford, The irreducibility of the space of curves of given genus, Inst. Hautes Études Sci. Publ. Math. (1969), no. 36, 75–109.Mathematical Reviews (MathSciNet): MR41:6850
Zentralblatt MATH: 0181.48803
Digital Object Identifier: doi:10.1007/BF02684599 - [Do] R. Donagi, The tetragonal construction, Bull. Amer. Math. Soc. (N.S.) 4 (1981), no. 2, 181–185.Mathematical Reviews (MathSciNet): MR82a:14009
Zentralblatt MATH: 0491.14016
Digital Object Identifier: doi:10.1090/S0273-0979-1981-14875-8
Project Euclid: euclid.bams/1183547998 - [D-S] R. Donagi and R. C. Smith, The structure of the Prym map, Acta Math. 146 (1981), no. 1-2, 25–102.Mathematical Reviews (MathSciNet): MR82k:14030b
Zentralblatt MATH: 0538.14019
Digital Object Identifier: doi:10.1007/BF02392458 - [EGA] A. Grothendieck, Éléments de géométrie algébrique. II. Étude globale élémentaire de quelques classes de morphismes, Inst. Hautes Études Sci. Publ. Math. (1961), no. 8, 222.
- [F-L] W. Fulton and R. Lazarsfeld, On the connectedness of degeneracy loci and special divisors, Acta Math. 146 (1981), no. 3-4, 271–283.Mathematical Reviews (MathSciNet): MR82k:14016
Zentralblatt MATH: 0469.14018
Digital Object Identifier: doi:10.1007/BF02392466 - [F-S 1] R. Friedman and R. Smith, Degenerations of Prym varieties and intersections of three quadrics, Invent. Math. 85 (1986), no. 3, 615–635.Mathematical Reviews (MathSciNet): MR88a:14030
Zentralblatt MATH: 0619.14027
Digital Object Identifier: doi:10.1007/BF01390330 - [F-S 2] R. Friedman and R. Smith, The generic Torelli theorem for the Prym map, Invent. Math. 67 (1982), no. 3, 473–490.Mathematical Reviews (MathSciNet): MR83i:14017
Zentralblatt MATH: 0506.14042
Digital Object Identifier: doi:10.1007/BF01398932 - [Gr] M. Green, Quadrics of rank four in the ideal of a canonical curve, Invent. Math. 75 (1984), no. 1, 85–104.Mathematical Reviews (MathSciNet): MR85f:14028
Zentralblatt MATH: 0542.14018
Digital Object Identifier: doi:10.1007/BF01403092 - [Ha] J. Harris, Theta-characteristics on algebraic curves, Trans. Amer. Math. Soc. 271 (1982), no. 2, 611–638.Mathematical Reviews (MathSciNet): MR83m:14022
Zentralblatt MATH: 0513.14025
Digital Object Identifier: doi:10.2307/1998901 - [Ig 1] J. I. Igusa, A desingularization problem in the theory of Siegel modular functions, Math. Ann. 168 (1967), 228–260.Mathematical Reviews (MathSciNet): MR36:1439
Zentralblatt MATH: 0145.09702
Digital Object Identifier: doi:10.1007/BF01361555 - [Ig 2] J. I. Igusa, Theta Functions, Grundlehren der Math. Wiss., vol. 194, Springer-Verlag, Berlin-New York, 1972.
- [Ma] L. Masiewicki, Universal properties of Prym varieties with an application to algebraic curves of genus five, Trans. Amer. Math. Soc. 222 (1976), 221–240.Mathematical Reviews (MathSciNet): MR54:10280
Zentralblatt MATH: 0333.14012
Digital Object Identifier: doi:10.2307/1997667
JSTOR: links.jstor.org - [Mu 1] D. Mumford, On the Kodaira Dimension of the Siegel Modular Variety, Algebraic geometry—open problems (Ravello, 1982), Springer Lecture Notes, vol. 997, Springer-Verlag, New York, 1983, pp. 348–375.Mathematical Reviews (MathSciNet): MR85d:14061
Zentralblatt MATH: 0527.14036
Digital Object Identifier: doi:10.1007/BFb0061652 - [Mu 2] D. Mumford, Prym Varieties I, Contributions to Analysis (a collection of papers dedicated to Lipman Bers), Academic Press, New York, 1974, pp. 325–350.
- [Mu 3] D. Mumford, Theta characteristics of an algebraic curve, Ann. Sci. École Norm. Sup. (4) 4 (1971), 181–192.
- [Mu 4] D. Mumford, Varieties defined by quadratic equations, Questions on Algebraic Varieties (C.I.M.E., III Ciclo, Varenna, 1969), Edizioni Cremonese, Rome, 1970, pp. 29–100.
- [Mu 5] D. Mumford, On the equations defining abelian varieties I, Invent. Math. 1 (1966), 287–354.Mathematical Reviews (MathSciNet): MR34:4269
Zentralblatt MATH: 0219.14024
Digital Object Identifier: doi:10.1007/BF01389737 - [Mu 6] D. Mumford, Abelian Varieties, Tata Studies in Math., vol. 5, Published for the Tata Institute of Fundamental Research, Bombay; Oxford University Press, London, London, 1970.
- [Mu 7] D. Mumford, An analytic construction of degenerating abelian varieties over complete rings, Compositio Math. 24 (1972), 239–272.
- [Na]1 Y. Namikawa, A new compactification of the Siegel space and degeneration of Abelian varieties. I, Math. Ann. 221 (1976), no. 2, 97–141.Mathematical Reviews (MathSciNet): MR58:697a
Zentralblatt MATH: 0306.14016
Digital Object Identifier: doi:10.1007/BF01433145 - [Na]2 Y. Namikawa, A new compactification of the Siegel space and degeneration of Abelian varieties. II, Math. Ann. 221 (1976), no. 3, 201–241.Mathematical Reviews (MathSciNet): MR58:697b
Zentralblatt MATH: 0327.14013
Digital Object Identifier: doi:10.1007/BF01596390 - [Re] S. Recillas, Jacobians of curves with $g\sp1\sb4$'s are the Prym's of trigonal curves, Bol. Soc. Mat. Mexicana (2) 19 (1974), no. 1, 9–13.
- [S-V] R. Smith and R. Varley, Components of the locus of singular theta divisors of genus $5$, Algebraic Geometry, Sitges (Barcelona) 1983, Lecture Notes in Math., vol. 1124, Springer-Verlag, Berlin-New York, 1985, pp. 338–416.Mathematical Reviews (MathSciNet): MR86k:14030
Zentralblatt MATH: 0598.14036
Digital Object Identifier: doi:10.1007/BFb0075005 - [Te] M. Teixidor i Bigas, For which Jacobi varieties is $\rm Sing\,\Theta$ reducible? J. Reine Angew. Math. 354 (1984), 141–149.Mathematical Reviews (MathSciNet): MR86c:14025
Zentralblatt MATH: 0542.14020
Digital Object Identifier: doi:10.1515/crll.1984.354.141 - [Tj 1] A. N. Tjurin, Five lectures on three-dimensional varieties, Uspehi Mat. Nauk 27 (1972), no. 5, (167), 3–50.
- [Tj 2] A. N. Tjurin, The intersection of quadrics, Uspehi Mat. Nauk 30 (1975), no. 6(186), 51–99.
- [Tj 3] A. N. Tjurin, The geometry of the Poincaré theta divisor of a Prym variety, Math. USSR-Izv 9 (1975), 951–986.Zentralblatt MATH: 0339.14017
- [We 1] G. Welters, A theorem of Gieseker-Petri type for Prym varieties, Ann. Sci. École Norm. Sup. (4) 18 (1985), no. 4, 671–683.
- [We 2] G. Welters, The surface $C-C$ on Jacobi varieties and 2nd order theta functions, Acta Math. 157 (1986), no. 1-2, 1–22.Mathematical Reviews (MathSciNet): MR87j:14048
Zentralblatt MATH: 0771.14012
Digital Object Identifier: doi:10.1007/BF02392589 - [We 3] G. Welters, Abel-Jacobi isogenies for certain types of Fano threefolds, Mathematical Centre Tracts, vol. 141, Mathematisch Centrum, Amsterdam, 1981.

- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- Le problème de Bogomolov effectif sur les variétés abéliennes
Galateau, Aurélien, Algebra & Number Theory, 2010 - Torsion pour les variétés abéliennes de type I et II
Hindry, Marc and Ratazzi, Nicolas, Algebra & Number Theory, 2016 - Prolongement analytique sur les variétés de Siegel
Pilloni, Vincent, Duke Mathematical Journal, 2011
- Le problème de Bogomolov effectif sur les variétés abéliennes
Galateau, Aurélien, Algebra & Number Theory, 2010 - Torsion pour les variétés abéliennes de type I et II
Hindry, Marc and Ratazzi, Nicolas, Algebra & Number Theory, 2016 - Prolongement analytique sur les variétés de Siegel
Pilloni, Vincent, Duke Mathematical Journal, 2011 - Sur la dynamique unidimensionnelle en régularité intermédiaire
Deroin, Bertrand, Kleptsyn, Victor, and Navas, Andrés, Acta Mathematica, 2007 - Sur le groupe de Chow de codimension deux des variétés sur les corps finis
Pirutka, Alena, Algebra & Number Theory, 2011 - Sur l'incomplétude de la série linéaire caractéristique
d'une famille de courbes planes à nœuds et à cusps
Guffroy, Sébastien, Nagoya Mathematical Journal, 2003 - Groupes commutatifs d'automorphismes d'une variété kählérienne compacte
Dinh, Tien-Cuong and Sibony, Nessim, Duke Mathematical Journal, 2004 - Sur l'équation {$a\sp 3+b\sp 3=c\sp p$}
Kraus, Alain, Experimental Mathematics, 1998 - Homologie de contact des variétés toroïdales
Bourgeois, Frederic and Colin, Vincent, Geometry & Topology, 2005 - L'anneau de cohomologie des variétés de Seifert non-orientables
Bauval, Anne and Hayat, Claude, Osaka Journal of Mathematics, 2017