Brazilian Journal of Probability and Statistics

Partitioning measure of quasi-symmetry for square contingency tables

Kouji Tahata, Keigo Kozai, and Sadao Tomizawa

Full-text: Open access

Abstract

For the analysis of square contingency tables, we propose the Kullback–Leibler information type measure to represent the degree of departure from the quasi-symmetry (QS) model. We introduce the global quasi-symmetry (GQS) model, and show that the QS model holds if and only if both the GQS and extended quasi-symmetry (EQS) models hold. Furthermore, we propose a measure of departure from each of the GQS and the EQS models, and show that the value of measure of QS is equal to the sum of the value of measure of GQS and that of EQS.

Article information

Source
Braz. J. Probab. Stat., Volume 28, Number 3 (2014), 353-366.

Dates
First available in Project Euclid: 17 July 2014

Permanent link to this document
https://projecteuclid.org/euclid.bjps/1405603506

Digital Object Identifier
doi:10.1214/12-BJPS211

Mathematical Reviews number (MathSciNet)
MR3263052

Zentralblatt MATH identifier
1296.53127

Keywords
Extended quasi-symmetry global quasi-symmetry Kullback–Leibler information quasi-symmetry square contingency table

Citation

Tahata, Kouji; Kozai, Keigo; Tomizawa, Sadao. Partitioning measure of quasi-symmetry for square contingency tables. Braz. J. Probab. Stat. 28 (2014), no. 3, 353--366. doi:10.1214/12-BJPS211. https://projecteuclid.org/euclid.bjps/1405603506


Export citation

References

  • Bishop, Y. M. M., Fienberg, S. E. and Holland, P. W. (1975). Discrete Multivariate Analysis: Theory and Practice. Cambridge, MA: The MIT Press.
  • Bowker, A. H. (1948). A test for symmetry in contingency tables. Journal of the American Statistical Association 43, 572–574.
  • Caussinus, H. (1966). Contribution à l’analyse statistique des tableaux de corrélation. Annales de la Faculté des Sciences de l’Université de Toulouse 29, 77–182.
  • Caussinus, H. (2002). Some concluding observations. Annales de la Faculté des Sciences de Toulouse 11, 587–591.
  • Goodman, L. A. (1979). Simple models for the analysis of association in cross-classifications having ordered categories. Journal of the American Statistical Association 74, 537–552.
  • Kateri, M. and Papaioannou, T. (1997). Asymmetry models for contingency tables. Journal of the American Statistical Association 92, 1124–1131.
  • Lawal, B. (2003). Categorical Data Analysis with SAS and SPSS Applications. Mahwah, NJ: Lawrence Erlbaum Associates.
  • Tahata, K. and Tomizawa, S. (2006). Decompositions for extended double symmetry models in square contingency tables with ordered categories. Journal of the Japan Statistical Society 36, 91–106.
  • Tahata, K., Miyamoto, N. and Tomizawa, S. (2004). Measure of departure from quasi-symmetry and Bradley–Terry models for square contingency tables with nominal categories. Journal of the Korean Statistical Society 33, 129–147.
  • Tominaga, K. (1979). Nippon no Kaisou Kouzou (Japanese Hierarchical Structure). Tokyo: Univ. Tokyo Press (in Japanese).
  • Tomizawa, S. (1984). Three kinds of decompositions for the conditional symmetry model in a square contingency table. Journal of the Japan Statistical Society 14, 35–42.
  • Tomizawa, S. and Tahata, K. (2007). The analysis of symmetry and asymmetry: Orthogonality of decomposition of symmetry into quasi-symmetry and marginal symmetry for multi-way tables. Journal de la Société Française de Statistique 148, 3–36.
  • Tomizawa, S., Miyamoto, N., Yamamoto, K. and Sugiyama, A. (2007). Extensions of linear diagonal-parameter symmetry and quasi-symmetry models for cumulative probabilities in square contingency tables. Statistica Neerlandica 61, 273–283.