Brazilian Journal of Probability and Statistics

Limit theorems for empirical Fréchet means of independent and non-identically distributed manifold-valued random variables

Wilfrid S. Kendall and Huiling Le

Full-text: Open access


We prove weak laws of large numbers and central limit theorems of Lindeberg type for empirical centres of mass (empirical Fréchet means) of independent nonidentically distributed random variables taking values in Riemannian manifolds. In order to prove these theorems we describe and prove a simple kind of Lindeberg–Feller central approximation theorem for vector-valued random variables, which may be of independent interest and is therefore the subject of a self-contained section. This vector-valued result allows us to clarify the number of conditions required for the central limit theorem for empirical Fréchet means, while extending its scope.

Article information

Braz. J. Probab. Stat., Volume 25, Number 3 (2011), 323-352.

First available in Project Euclid: 22 August 2011

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Central approximation theorem central limit theorem curvature empirical Fréchet mean exponential map Fréchet mean gradient Hessian Kähler manifold Lindeberg condition Newton’s method Riemannian centre of mass weak law of large numbers


Kendall, Wilfrid S.; Le, Huiling. Limit theorems for empirical Fréchet means of independent and non-identically distributed manifold-valued random variables. Braz. J. Probab. Stat. 25 (2011), no. 3, 323--352. doi:10.1214/11-BJPS141.

Export citation


  • Afsari, B. (2011). Riemannian Lp center of mass: Existence, uniqueness, and convexity. Proc. Amer. Math. Soc. 139, 655–655.
  • Barbour, A. D. and Gnedin, A. V. (2009). Small counts in the infinite occupancy scheme. Electron. J. Probab. 14, 365–384.
  • Bhattacharya, A. and Bhattacharya, R. (2008). Statistics on Riemannian manifolds: Asymptotic distribution and curvature. Proc. Amer. Math. Soc. 136, 2959–2967.
  • Bhattacharya, R. and Patrangenaru, V. (2003). Large sample theory of intrinsic and extrinsic sample means on manifolds—I. Ann. Statist. 31, 1–29.
  • Bhattacharya, R. and Patrangenaru, V. (2005). Large sample theory of intrinsic and extrinsic sample means on manifolds—II. Ann. Statist. 33, 1225–1259.
  • Bhattacharya, R. and Rao, R. R. (1976). Normal Approximation and Asymptotic Expansions. New York–London–Sydney: Wiley.
  • Billingsley, P. (1986). Probability and Measure. New York: Wiley.
  • Chatterjee, S. (2008). A new method of normal approximation. Ann. Probab. 36, 1584–1610.
  • Chow, Y. S. and Teicher, H. (2003). Probability Theory: Independence, Interchangeability, Martingales. New York–Heidelberg–Berlin: Springer-Verlag.
  • Corcuera, J.-M. and Kendall, W. S. (1999). Riemannian barycentres and geodesic convexity. Math. Proc. Cambridge Philos. Soc. 127, 253–269.
  • Feller, W. (1966). An Introduction to Probability Theory and Its Applications, Volume 2. New York: Wiley.
  • Fréchet, M. (1948). Les éléments aléatoires de nature quelconque dans un espace distancié. Ann. Inst. Henri Poincaré 10, 215–310.
  • Karcher, H. (1977). Riemannian center of mass and mollifier smoothing. Comm. Pure Appl. Math. 30, 509–541.
  • Kendall, W. S. (1990). Probability, convexity, and harmonic maps with small image I: Uniqueness and fine existence. Proc. Lond. Math. Soc. (3) 61, 371–406.
  • Kendall, W. S. (1991a). Convex geometry and nonconfluent Γ-martingales I: Tightness and strict convexity. In Stochastic Analysis, Proceedings, LMS Durham Symposium, 11th–21st July 1990 (M. T. Barlow and N. H. Bingham, eds.) 163–178. Cambridge: Cambridge Univ. Press.
  • Kendall, W. S. (1991b). Convexity and the hemisphere. J. Lond. Math. Soc. (2) 43, 567–576.
  • Kendall, W. S. (1992a). Convex geometry and nonconfluent Γ-martingales II: Well-posedness and Γ-martingale convergence. Stochastics and Stochastic Reports 38, 135–147.
  • Kendall, W. S. (1992b). The Propeller: A counterexample to a conjectured criterion for the existence of certain convex functions. J. Lond. Math. Soc. (2) 46, 364–374.
  • Kendall, W. S. and Le, H. (2010). Statistical shape theory. In New Perspectives in Stochastic Geometry (W. S. Kendall and I. S. Molchanov, eds.) 10 348–373. Oxford: Clarendon Press, Oxford Univ. Press.
  • Le, H. (2001). Locating Fréchet means with application to shape spaces. Adv. Appl. Probab. 33, 324–338.
  • Le, H. (2004). Estimation of Riemannian barycentres. LMS J. Comput. Math 7, 193–200.
  • Picard, J. (1994). Barycentres et martingales sur une variété. Ann. Inst. H. Poincaré Probab. Stat. 30, 647–702.
  • Röllin, A. (2011). Stein’s method in high dimensions with applications. Available at arXiv: 1101.4454.
  • Villani, C. (2003). Topics in optimal transportation. Graduate Studies in Mathematics 58. Providence, RI: Amer. Math. Soc.
  • Ziezold, H. (1977). On expected figures and a strong law of large numbers for random elements in quasi-metric spaces. Conf. Inf. Theory, Statist. Decision Functions, Random Processes A, 591–602.
  • Ziezold, H. (1989). On expected figures in the plane. In Geobild ’89 (Georgenthal, 1989). Math. Res. 51, 105–110. Berlin: Akademie-Verlag.
  • Ziezold, H. (1994). Mean figures and mean shapes applied to biological figure and shape distributions in the plane. Biom. J. 36, 491–510.