Brazilian Journal of Probability and Statistics

A note on a unified approach for cure rate models

Mário de Castro, Vicente G. Cancho, and Josemar Rodrigues

Full-text: Open access

Abstract

Yin and Ibrahim [Canad. J. Statist. 33 (2005) 559–570] presented a unified class of cure rate models based on a Box–Cox type transformation of the population survival function. Our work provides a probabilistic justification to this transformation by means of the negative binomial distribution.

Article information

Source
Braz. J. Probab. Stat., Volume 24, Number 1 (2010), 100-103.

Dates
First available in Project Euclid: 31 December 2009

Permanent link to this document
https://projecteuclid.org/euclid.bjps/1262271219

Digital Object Identifier
doi:10.1214/08-BJPS015

Mathematical Reviews number (MathSciNet)
MR2580992

Zentralblatt MATH identifier
1298.62173

Keywords
Survival analysis cure rate models long-term survival models negative binomial distribution

Citation

de Castro, Mário; Cancho, Vicente G.; Rodrigues, Josemar. A note on a unified approach for cure rate models. Braz. J. Probab. Stat. 24 (2010), no. 1, 100--103. doi:10.1214/08-BJPS015. https://projecteuclid.org/euclid.bjps/1262271219


Export citation

References

  • Berkson, J. and Gage, R. P. (1952). Survival cure for cancer patients following treatment. Journal of the American Statistical Association 47 501–515.
  • Chen, M.-H., Ibrahim, J. G. and Sinha, D. (1999). A new Bayesian model for survival data with a surviving fraction. Journal of the American Statistical Association 94 909–919.
  • Cooner, F., Banerjee, S., Carlin, B. P. and Sinha, D. (2007). Flexible cure rate modeling under latent activation schemes. Journal of the American Statistical Association 102 560–572.
  • Ibrahim, J. G., Chen, M.-H. and Sinha, D. (2001). Bayesian Survival Analysis. Springer, New York.
  • Li, C. S., Taylor, J. M. G. and Sy, J. P. (2001). Identifiability of cure models. Statistics and Probability Letters 54 389–395.
  • Maller, R. A. and Zhou, X. (1996). Survival Analysis with Long-Term Survivors. Wiley, New York.
  • Piegorsch, W. W. (1990). Maximum likelihood estimation for the negative binomial dispersion parameter. Biometrics 46 863–867.
  • Saha, K. and Paul, S. (2005). Bias-corrected maximum likelihood estimator of the negative binomial dispersion parameter. Biometrics 61 179–185.
  • Tsodikov, A. D., Ibrahim, J. G. and Yakovlev, A. Y. (2003). Estimating cure rates from survival data: An alternative to two-component mixture models. Journal of the American Statistical Association 98 1063–1078.
  • Yakovlev, A. Y. and Tsodikov, A. D. (1996). Stochastic Models of Tumor Latency and Their Biostatistical Applications. World Scientific, Singapore.
  • Yin, G. and Ibrahim, J. G. (2005). Cure rate models: A unified approach. The Canadian Journal of Statistics 33 559–570.