Banach Journal of Mathematical Analysis

Intrinsic square function characterizations of weak Musielak–Orlicz Hardy spaces

Xianjie Yan

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

Let φ:Rn×[0,)[0,) satisfy that, for any given xRn, φ(x,) is an Orlicz function and φ(,t) is a Muckenhoupt A(Rn) weight uniformly in t(0,). In this article, via using the atomic and Littlewood–Paley function characterizations of the weak Musielak–Orlicz Hardy space WHφ(Rn), for any α(0,1] and sZ+, we first establish its s-order intrinsic square function characterizations in terms of the intrinsic Lusin area function Sα,s, the intrinsic g-function gα,s and the intrinsic gλ-function gλ,α,s with the best known range λ(2+2(α+s)/n,).

Article information

Source
Banach J. Math. Anal., Volume 13, Number 4 (2019), 969-988.

Dates
Received: 2 December 2018
Accepted: 12 February 2019
First available in Project Euclid: 9 October 2019

Permanent link to this document
https://projecteuclid.org/euclid.bjma/1570608170

Digital Object Identifier
doi:10.1215/17358787-2019-0007

Mathematical Reviews number (MathSciNet)
MR4016905

Zentralblatt MATH identifier
07118770

Subjects
Primary: 42B25: Maximal functions, Littlewood-Paley theory
Secondary: 42B30: $H^p$-spaces 42B35: Function spaces arising in harmonic analysis 46E30: Spaces of measurable functions (Lp-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)

Keywords
Musielak–Orlicz function weak Musielak–Orlicz Hardy space intrinsic square function atomic decomposition

Citation

Yan, Xianjie. Intrinsic square function characterizations of weak Musielak–Orlicz Hardy spaces. Banach J. Math. Anal. 13 (2019), no. 4, 969--988. doi:10.1215/17358787-2019-0007. https://projecteuclid.org/euclid.bjma/1570608170


Export citation

References

  • [1] N. Aguilera and C. Segovia, Weighted norm inequalities relating the $g_{\lambda }^{\ast }$ and the area functions, Studia Math. 61 (1977), no. 3, 293–303.
  • [2] J. Alvarez and M. Milman, $H^{p}$ continuity properties of Calderón-Zygmund-type operators, J. Math. Anal. Appl. 118 (1986), no. 1, 63–79.
  • [3] Z. Birnbaum and W. Orlicz, Über die Verallgemeinerung des Begriffes der zueinander konjugierten Potenzen, Studia Math. 3 (1931), no. 1, 1–67.
  • [4] A. Bonami, J. Feuto, and S. Grellier, Endpoint for the DIV-CURL lemma in Hardy spaces, Publ. Mat. 54 (2010), no. 2, 341–358.
  • [5] A. Bonami, S. Grellier, and L. D. Ky, Paraproducts and products of functions in $BMO({{{\mathbb{R}}}^{n}})$ and $H^{1}({{{\mathbb{R}}}^{n}})$ through wavelets, J. Math. Pures Appl. (9) 97 (2012), no. 3, 230–241.
  • [6] A. Bonami, T. Iwaniec, P. Jones, and M. Zinsmeister, On the product of functions in $BMO$ and $H^{1}$, Ann. Inst. Fourier (Grenoble) 57 (2007), no. 5, 1405–1439.
  • [7] T. A. Bui, J. Cao, L. D. Ky, D. Yang, and S. Yang, Musielak-Orlicz-Hardy spaces associated with operators satisfying reinforced off-diagonal estimates, Anal. Geom. Metr. Spaces 1 (2013), 69–129.
  • [8] Z. Cai, C. Chu, and C. Lei, Existence of positive solutions for a fractional elliptic problems with the Hardy-Sobolev-Maz’ya potential and critical nonlinearities, Bound. Value Probl. 2017, no 181.
  • [9] R. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. (N.S.) 83 (1977), no. 4, 569–645.
  • [10] F. Deringoz, V. S. Guliyev, and M. A. Ragusa, Intrinsic square functions on vanishing generalized Orlicz-Morrey spaces, Set-Valued Var. Anal. 25 (2017), no. 4, 807–828.
  • [11] C. Fefferman, N. M. Rivière and Y. Sagher, Interpolation between $H^{p}$ spaces: The real method, Trans. Amer. Math. Soc. 191 (1974), 75–81.
  • [12] C. Fefferman and E. M. Stein, $H^{p}$ spaces of several variables, Acta Math. 129 (1972), no. 3–4, 137–193.
  • [13] G. B. Folland and E. M. Stein, Hardy Spaces on Homogeneous Groups, Math. Notes 28, Princeton Univ. Press, Princeton, 1982.
  • [14] X. Fu and D. Yang, Wavelet characterizations of Musielak-Orlicz Hardy spaces, Banach J. Math. Anal. 12 (2018), no. 4, 1017–1046.
  • [15] J. García-Cuerva, Weighted $H^{p}$ spaces, Dissertationes Math. 162 (1979), 1–63.
  • [16] L. Grafakos, Modern Fourier Analysis, 3rd ed., Grad. Texts in Math. 250, Springer, New York, 2014.
  • [17] V. S. Guliyev, M. N. Omarova, M. A. Ragusa and A. Scapellato, Commutators and generalized local Morrey spaces, J. Math. Anal. Appl. 457 (2018), no. 2, 1388–1402.
  • [18] S. Hou, D. Yang, and S. Yang, Lusin area function and molecular characterizations of Musielak-Orlicz Hardy spaces and their applications, Commun. Contemp. Math. 15 (2013), no. 6, art. ID 1350029.
  • [19] J. Huang and Y. Liu, Some characterizations of weighted Hardy spaces, J. Math. Anal. Appl. 363 (2010), no. 1, 121–127.
  • [20] R. Jiang and D. Yang, New Orlicz-Hardy spaces associated with divergence form elliptic operators, J. Funct. Anal. 258 (2010), no. 4, 1167–1224.
  • [21] A. Kalybay, D. Karatayeva, R. Oinarov, and A. Temirkhanova, Oscillation of a second order half-linear difference equation and the discrete Hardy inequality, Electron. J. Qual. Theory Differ. Equ. 2017, no. 43.
  • [22] L. D. Ky, New Hardy spaces of Musielak-Orlicz type and boundedness of sublinear operators, Integral Equations Operator Theory 78 (2014), no. 1, 115–150.
  • [23] A. K. Lerner, Sharp weighted norm inequalities for Littlewood-Paley operators and singular integrals, Adv. Math. 226 (2011), no. 5, 3912–3926.
  • [24] A. K. Lerner, On sharp aperture-weighted estimates for square functions, J. Fourier Anal. Appl. 20 (2014), no. 4, 784–800.
  • [25] Y. Liang, J. Huang, and D. Yang, New real-variable characterizations of Musielak-Orlicz Hardy spaces, J. Math. Anal. Appl. 395 (2012), no. 1, 413–428.
  • [26] Y. Liang and D. Yang, Intrinsic square function characterizations of Musielak-Orlicz Hardy spaces, Trans. Amer. Math. Soc. 367 (2015), no. 5, 3225–3256.
  • [27] Y. Liang, D. Yang, and R. Jiang, Weak Musielak-Orlicz Hardy spaces and applications, Math. Nachr. 289 (2016), no. 5–6, 634–677.
  • [28] J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Math. 1034, Springer, Berlin, 1983.
  • [29] W. Orlicz, Über eine gewisse Klasse von Raumen vom Typus B, Bull. Int. Acad. Pol. Ser. A 8 (1932), no. 8–9, 207–220.
  • [30] E. M. Stein, M. H. Taibleson, and G. Weiss, Weak type estimates for maximal operators on certain $H^{p}$ classes, Rend. Circ. Mat. Palermo (2) 1981, suppl. 1, 81–97.
  • [31] H. Wang, Boundedness of intrinsic square functions on the weighted weak Hardy spaces, Integral Equations Operator Theory 75 (2013), no. 1, 135–149.
  • [32] H. Wang and H. Liu, The intrinsic square function characterizations of weighted Hardy spaces, Illinois J. Math. 56 (2012), no. 2, 367–381.
  • [33] M. Wilson, The intrinsic square function, Rev. Mat. Iberoam. 23 (2007), no. 3, 771–791.
  • [34] M. Wilson, Weighted Littlewood-Paley Theory and Exponential-Square Integrability, Lecture Notes in Math. 1924, Springer, Berlin, 2008.
  • [35] M. Wilson, How fast and in what sense(s) does the Calderón reproducing formula converge?, J. Fourier Anal. Appl. 16 (2010), no. 5, 768–785.
  • [36] M. Wilson, Convergence and stability of the Calderón reproducing formula in $H^{1}$ and $BMO$, J. Fourier Anal. Appl. 17 (2011), no. 5, 801–820.
  • [37] X. Yan, Intrinsic square function characterizations of variable weak Hardy spaces, to appear in Taiwanese J. Math., preprint, https://projecteuclid.org/euclid.twjm/1555315214.
  • [38] D. Yang, Y. Liang, and L. D. Ky, Real-Variable Theory of Musielak-Orlicz Hardy Spaces, Lecture Notes in Math. 2182, Springer, Cham, 2017.
  • [39] C. Zhuo, D. Yang, and Y. Liang, Intrinsic square function characterizations of Hardy spaces with variable exponents, Bull. Malays. Math. Sci. Soc. 39 (2016), no. 4, 1541–1577.