Bulletin of the Belgian Mathematical Society - Simon Stevin

Unbounded analysis operators

H. Hosseini Giv, M. Radjabalipour, and A. Askari Hemmat

Full-text: Open access

Abstract

The paper studies bounded or unbounded operators which can act as analysis operators or synthesis operators of various signal processing including generalized frames, semi-frames, discrete frames, Fourier transforms, etc. The paper is concluded by a short discussion of the controllability of the behavior of the processed signals.

Article information

Source
Bull. Belg. Math. Soc. Simon Stevin, Volume 20, Number 1 (2013), 123-132.

Dates
First available in Project Euclid: 18 April 2013

Permanent link to this document
https://projecteuclid.org/euclid.bbms/1366306718

Digital Object Identifier
doi:10.36045/bbms/1366306718

Mathematical Reviews number (MathSciNet)
MR3082747

Zentralblatt MATH identifier
06645180

Subjects
Primary: 42C15: General harmonic expansions, frames
Secondary: 43A25: Fourier and Fourier-Stieltjes transforms on locally compact and other abelian groups

Keywords
Generalized frame Coherent state system Algebraic frame Analytic frame Fourier transform Unbounded operators

Citation

Hosseini Giv, H.; Radjabalipour, M.; Askari Hemmat, A. Unbounded analysis operators. Bull. Belg. Math. Soc. Simon Stevin 20 (2013), no. 1, 123--132. doi:10.36045/bbms/1366306718. https://projecteuclid.org/euclid.bbms/1366306718


Export citation