Bulletin of the Belgian Mathematical Society - Simon Stevin

Kazhdan property for spaces of continuous functions

Yves de Cornulier

Full-text: Open access

Abstract

We combine results of Vaserstein and Shalom to prove Kazhdan's Property (T) for various topological groups of the form $\textnormal{SL}(n,\mathcal{C}(X,\mathbb R))$ or $\textnormal{SL}(n,\mathcal{C}(X,\mathbb C))$, for $n\ge 3$ and $X$ a topological subspace of a Euclidean space.

Article information

Source
Bull. Belg. Math. Soc. Simon Stevin, Volume 13, Number 5 (2007), 899-902.

Dates
First available in Project Euclid: 1 February 2007

Permanent link to this document
https://projecteuclid.org/euclid.bbms/1170347812

Digital Object Identifier
doi:10.36045/bbms/1170347812

Mathematical Reviews number (MathSciNet)
MR2293216

Zentralblatt MATH identifier
1121.18011

Subjects
Primary: 18F25: Algebraic $K$-theory and L-theory [See also 11Exx, 11R70, 11S70, 12- XX, 13D15, 14Cxx, 16E20, 19-XX, 46L80, 57R65, 57R67]
Secondary: 22D10: Unitary representations of locally compact groups

Citation

de Cornulier, Yves. Kazhdan property for spaces of continuous functions. Bull. Belg. Math. Soc. Simon Stevin 13 (2007), no. 5, 899--902. doi:10.36045/bbms/1170347812. https://projecteuclid.org/euclid.bbms/1170347812


Export citation