Bulletin of the American Mathematical Society

The generalized gamma function, new Hardy spaces, and representations of holomorphic type for the conformal group

Kenneth I. Gross, Wayne J. Holman, III, and Ray A. Kunze

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc., Volume 83, Number 3 (1977), 412-415.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.bams/1183538811

Mathematical Reviews number (MathSciNet)
MR0435290

Zentralblatt MATH identifier
0349.22007

Subjects
Primary: 22E30: Analysis on real and complex Lie groups [See also 33C80, 43-XX] 22E45: Representations of Lie and linear algebraic groups over real fields: analytic methods {For the purely algebraic theory, see 20G05} 33A75 43A80: Analysis on other specific Lie groups [See also 22Exx]
Secondary: 32M15: Hermitian symmetric spaces, bounded symmetric domains, Jordan algebras [See also 22E10, 22E40, 53C35, 57T15] 33A15 81A78 46E20: Hilbert spaces of continuous, differentiable or analytic functions

Citation

Gross, Kenneth I.; Holman, Wayne J.; Kunze, Ray A. The generalized gamma function, new Hardy spaces, and representations of holomorphic type for the conformal group. Bull. Amer. Math. Soc. 83 (1977), no. 3, 412--415. https://projecteuclid.org/euclid.bams/1183538811


Export citation

References

  • 1. R. Godement, Fonctions automorphes, Séminaire Henri Cartan, 10e année: 1957/58, Secretariat Mathématique, Paris, 1958. MR 21 #2750.
  • 2(a). K. I. Gross and R. A. Kunze, Fourier Bessel transforms and holomorphic discrete series, Conference on Harmonic Analysis, Lecture Notes in Math., vol. 266, Springer-Verlag, Berlin and New York, 1972, pp. 79-122. MR 51-6285.
  • 2(b). K. I. Gross and R. A. Kunze, Generalized Bessel transforms and unitary representations, Harmonic Analysis on Homogeneous Spaces, Proc. Sympos. Pure Math., vol. 26, Amer. Math. Soc. Providence, R. I., 1973, pp. 347-350. MR 49 #9120.
  • 2(c). K. I. Gross and R. A. Kunze, Bessel functions and representation theory. I, J. Functional Analysis 22 (1976), 73-105.
  • 2(d). K. I. Gross and R. A. Kunze, Bessel functions and representation theory. II, J. Functional Analysis. (to appear).
  • 3. Harish-Chandra, Representations of semi-simple Lie groups. IV, V, VI, Amer. J. Math. 77 (1955), 743-777; ibid. 78 (1956), 1-41; ibid. 78 (1956), 564-628. MR 17, 282; 18, 490.
  • 4. H. Jakobson and M. Vergne, Wave and Dirac operators, and representations of the conformal group, 1976 (preprint).
  • 5. A. Knapp and K. Okamoto, Limits of holomorphic discrete series, J. Functional Analysis 9(1972), 375-409. MR 45 #8774.
  • 6(a). H. Rossi and M. Vergne, Representations of certain solvable Lie groups on Hilbert spaces of holomorphic functions and the application to the holomorphic discrete series of a semi-simple Lie group, J. Functional Analysis 13 (1973), 324-389.
  • 6(b). H. Rossi and M. Vergne, Analytic continuation of the holomorphic discrete series of a semi-simple Lie group, Acta Math. 136 (1976), 1-59.
  • 7. N. Wallach, Analytic continuation of the discrete series. I, II, Trans. Amer. Math. Soc. (to appear).