Bulletin of the American Mathematical Society

The Kunze-Stein phenomenon

Michael Cowling

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc., Volume 83, Number 2 (1977), 293-295.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.bams/1183538694

Mathematical Reviews number (MathSciNet)
MR0425022

Zentralblatt MATH identifier
0341.22005

Subjects
Primary: 22E30: Analysis on real and complex Lie groups [See also 33C80, 43-XX] 22E45: Representations of Lie and linear algebraic groups over real fields: analytic methods {For the purely algebraic theory, see 20G05} 43A22: Homomorphisms and multipliers of function spaces on groups, semigroups, etc.

Citation

Cowling, Michael. The Kunze-Stein phenomenon. Bull. Amer. Math. Soc. 83 (1977), no. 2, 293--295. https://projecteuclid.org/euclid.bams/1183538694


Export citation

References

  • 1. Harish-Chandra, Harmonic analysis on semisimple Lie groups, Bull. Amer. Math. Soc. 76 (1970), 529-551. MR 41 #1933.
  • 2. Harish-Chandra, On the theory of the Eisenstein integral, Conf. on Harmonic Analysis (College Park, Md., 1971), Lecture Notes in Math., vol. 266, Springer-Verlag, Berlin and New York, 1972, pp. 123-149. MR 51 #6285.
  • 3. C. S. Herz, Sur le phénomène de Kunze-Stein, C. R. Acad. Sci. Paris Sér. A. 270 (1970), A491-A493. MR 43 #6741.
  • 4. R. A. Kunze and E. M. Stein, Uniformly bounded representations and harmonic analysis on the 2 x 2 real unimodular group, Amer. J. Math. 82 (1960), 1-62. MR 29 #1287.
  • 5. E. M. Stein, Analytic continuation of group representations, Advances in Math. 4 (1970), 172-207. MR 41 #8584.
  • 6. G. Warner, Harmonic analysis on semisimple Lie groups. II, Grundlehren math. Wiss., Band 189, Springer-Verlag, Berlin and New York, 1972.