Bulletin of the American Mathematical Society

The antipode of a finite-dimensional Hopf algebra over a field has finite order

David E. Radford

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc., Volume 81, Number 6 (1975), 1103-1105.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.bams/1183537423

Mathematical Reviews number (MathSciNet)
MR0396650

Zentralblatt MATH identifier
0326.16008

Subjects
Primary: 16A50 16A58 16A60
Secondary: 15A25 15A30: Algebraic systems of matrices [See also 16S50, 20Gxx, 20Hxx]

Citation

Radford, David E. The antipode of a finite-dimensional Hopf algebra over a field has finite order. Bull. Amer. Math. Soc. 81 (1975), no. 6, 1103--1105. https://projecteuclid.org/euclid.bams/1183537423


Export citation

References

  • 1. R. G. Larson, Characters of Hopf algebras, J. Algebra 17 (1971), 352-368. MR 44 #287.
  • 2. R. G. Larson, The order of the antipode of a Hopf algebra, Proc. Amer. Math. Soc. 21 (1969), 167-170. MR 39 #1524.
  • 3. R. G. Larson and M. E. Sweedler, An associative orthogonal bilinear form for Hopf algebras, Amer. J. Math. 91 (1969), 75-94. MR 39 #1523.
  • 4. D. E. Radford, The order of the antipode of a finite-dimensional Hopf algebra is finite, Amer. J. Math, (to appear).
  • 5. M. E. Sweedler, Hopf algebras, Math. Lecture Note Series, Benjamin, New York, 1969. MR 40 #5705.
  • 6. E. J. Taft and R. L. Wilson, On antipodes in pointed Hopf algebras, J. Algebra 29 (1974), 27-32. MR 49 #2820.
  • 7. W. C. Waterhouse, Antipodes and grouplikes in finite Hopf algebras(to appear).