Bulletin of the American Mathematical Society

A new comparison theorem for scalar Riccati equations

R. A. Stafford and J. W. Heidel

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc., Volume 80, Number 4 (1974), 754-757.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.bams/1183535718

Mathematical Reviews number (MathSciNet)
MR0342771

Zentralblatt MATH identifier
0305.34055

Subjects
Primary: 34A30: Linear equations and systems, general 34C05: Location of integral curves, singular points, limit cycles

Citation

Stafford, R. A.; Heidel, J. W. A new comparison theorem for scalar Riccati equations. Bull. Amer. Math. Soc. 80 (1974), no. 4, 754--757. https://projecteuclid.org/euclid.bams/1183535718


Export citation

References

  • 1. Philip Hartman, Ordinary differential equations, Wiley, New York, 1964. MR 30 #1270.
  • 2. Einar Hille, Non-oscillation theorems, Trans. Amer. Math. Soc. 64 (1948), 234-252. MR 10, 376.
  • 3. R. A. Jones, Existence theorems for matrix Riccati equations, Ph.D. Dissertation, University of Tennessee, 1973.
  • 4. A. Ju. Levin, A comparison principle for second-order differential equations, Dokl. Akad. Nauk SSSR 135 (1960), 783-786=Soviet Math. Dokl. 1 (1960), 1313-1316. MR 23#A1875.
  • 5. R. A. Stafford, Existence criteria for scalar Riccati equations, Ph.D. Dissertation, University of Tennessee, 1974.
  • 6. C. Sturm, Sur les équations différentielles lineares du second ordre, J. Math. Pures Appl. 1 (1836), 106-186.
  • 7. James S. W. Wong, Oscillation and nonoscillation of solutions of second order linear differential equations with integrable coefficients, Trans. Amer. Math. Soc. 144 (1969), 197-215. MR 40 #4536.