Bulletin of the American Mathematical Society

Vector fields generate few diffeomorphisms

J. Palis

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc., Volume 80, Number 3 (1974), 503-505.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.bams/1183535529

Mathematical Reviews number (MathSciNet)
MR0348795

Zentralblatt MATH identifier
0296.57008

Subjects
Primary: 58F10

Citation

Palis, J. Vector fields generate few diffeomorphisms. Bull. Amer. Math. Soc. 80 (1974), no. 3, 503--505. https://projecteuclid.org/euclid.bams/1183535529


Export citation

References

  • 1. P. Hartman, On local homeomorphisms of Euclidean spaces, Bol. Soc. Mat. Mexicana (2) 5 (1960), 220-241. MR 25 #5253.
  • 2. N. Kopell, Commuting diffeomorphisms, Proc. Sympos. Pure Math., vol. 14, Amer. Math. Soc., Providence, R.I., 1970, pp. 165-184. MR 42 #5285.
  • 3. N. Kopell, Commuting diffeomorphisms, Sympos. Differential Equations and Dynamical Systems, Springer-Verlag, Berlin and New York, 1971, pp. 162-163.
  • 4. P. F. Lam, Embedding a homeomorphism in a flow subject to differentiability conditions, Topological Dynamics, Benjamin, New York, 1968, pp. 319-333.
  • 5. J. Palis, On Morse-Smale dynamical systems, Topology 8 (1969), 385-404. MR 39 #7620.
  • 6. C. Pugh, An improved closing lemma and a general density theorem, Amer. J. Math. 89 (1967), 1010-1021. MR 37 #2257.
  • 7. S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747-817. MR 37 #3598.
  • 8. S. Smale, The Ω-Stability theorem, Proc. Sympos. Pure Math., vol. 14, Amer. Math. Soc., Providence, R.I., 1970, pp. 289-297. MR 42 #6852.
  • 9. S. Sternberg, Local Cn transformations of the real line, Duke Math. J. 24 (1957), 97-102. MR 21 #1371.