Bulletin of the American Mathematical Society

Review: Nathan Jacobson, Structure and Representations of Jordan Algebras

R. D. Schafer

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc., Volume 79, Number 3 (1973), 509-514.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.bams/1183534656

Citation

Schafer, R. D. Review: Nathan Jacobson, Structure and Representations of Jordan Algebras. Bull. Amer. Math. Soc. 79 (1973), no. 3, 509--514. https://projecteuclid.org/euclid.bams/1183534656


Export citation

References

  • 1. D. E. Knuth, A class of projective planes, Trans. Amer. Math. Soc. 115 (1965), 541-549. MR 34 #1916.
  • 2. D. E. Knuth and R. H. Bigelow, Programming languages for automata, J. Assoc. Comput. Mach. 14 (1967), 615-635.
  • 3. John Riordan, "Generating functions", Chapter 3 in Applied combinatorial mathematics, edited by E. F. Beckenbach, Wiley, New York, 1964.
  • 4. R. W. Hamming, Review (18, 478) of Seminumerical algorithms.Vol 2, by D. E. Knuth, Comput. Rev. 11 (1970), 99.
  • 5. R. R. Coveyou, "Random number generation is too important to be left to chance", in Studies in applied mathematics, SIAM, Philadelphia, Pa., 1969, pp. 70-111.
  • 6. W. A. Beyer, R. B. Roof and D. Williamson, The lattice structure of multiplicative congruential pseudo-random vectors, Math. Comp. 25 (1971), 345-363.
  • 7. E. D. Cashwell and C. J. Everett, A practical manual on the Monte Carlo method for random walk problems, Pergamon, New York, 1959. MR 21 #5269.
  • 8. J. H. Halton, A retrospective and prospective survey of the Monte Carlo methods, SIAM Rev. 12 (1970), 1-63. MR 41 #2878.