Bulletin of the American Mathematical Society

On inseparable Galois theory

Stephen U. Chase

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc., Volume 77, Number 3 (1971), 413-417.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.bams/1183532822

Mathematical Reviews number (MathSciNet)
MR0277504

Zentralblatt MATH identifier
0221.12053

Subjects
Primary: 12F15: Inseparable extensions
Secondary: 16A24

Citation

Chase, Stephen U. On inseparable Galois theory. Bull. Amer. Math. Soc. 77 (1971), no. 3, 413--417. https://projecteuclid.org/euclid.bams/1183532822


Export citation

References

  • 1. G. Angwin, On regular restricted Lie algebras(unpublished).
  • 2. R. L. Davis, A Galois theory for a class of purely inseparable exponent two field extensions, Bull. Amer. Math. Soc. 75 (1969), 1001-1004. MR 39 #5524.
  • 3. M. Gerstenhaber and A. Zaromp, On the Galois theory of purely inseparable field extensions, Bull. Amer. Math. Soc. 76 (1970), 1011-1014.
  • 4. G. Hochschild, Simple algebras with purely inseparable splitting fields of exponent one, Trans. Amer. Math. Soc. 79 (1955), 477-489. MR 17, 61.
  • 5. N. Jacobson, Lectures in abstract algebra. Vol. III: Theory of fields and Galois theory, Van Nostrand, Princeton, N. J., 1964. MR 30 #3087.
  • 6. G. S. Rinehart, Differential forms on general commutative algebras, Trans. Amer. Math. Soc. 108 (1963), 195-222. MR 27 #4850.
  • 7. S. Shatz, Galois theory, Lecture Notes in Math., no. 86, Springer-Verlag, Berlin, 1969, pp. 146-158.
  • 8. M. E. Sweedler, The Hopf algebra of an algebra applied to field theory, J. Algebra 8 (1968), 262-276. MR 36 #5105.
  • 9. M. E. Sweedler, Structure of inseparable extensions, Ann. of Math. (2) 87 (1968), 401-410. MR 36 #6391.
  • 10. M. E. Sweedler, Hopf algebras, Math. Lecture Note Series, Benjamin, New York, 1969. MR 40 #5705.