Bulletin of the American Mathematical Society

A complete elementary proof that Hilbert space is homeomorphic to the countable infinite product of lines

R. D. Anderson and R. H. Bing

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc., Volume 74, Number 5 (1968), 771-792.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.bams/1183529912

Mathematical Reviews number (MathSciNet)
MR0230284

Zentralblatt MATH identifier
0189.12402

Citation

Anderson, R. D.; Bing, R. H. A complete elementary proof that Hilbert space is homeomorphic to the countable infinite product of lines. Bull. Amer. Math. Soc. 74 (1968), no. 5, 771--792. https://projecteuclid.org/euclid.bams/1183529912


Export citation

References

  • 1. R. D. Anderson, Hilbert space is homeomorphic to the countable infinite product of lines, Bull. Amer. Math. Soc. 72 (1966), 515-519.
  • 2. R. D. Anderson, Topological properties of the Hilbert cube and the infinite product of open intervals, Trans. Amer. Math. Soc. 126 (1967), 200-216.
  • 3. R. D. Anderson, On topological infinite deficiency, Michigan Math. J. 14 (1967), 365-383.
  • 4. R. D. Anderson, On a theorem of Klee, Proc. Amer. Math, Soc. 17 (1966), 1401-1404.
  • 5. S. Banach, Théorie des opérations linéaires, Monografie Mat. PWN, Warsaw, 1932.
  • 6. C. Bessaga, On topological classification of complete linear metric spaces, Fund. Math. 56 (1965), 251-288.
  • 7. C. Bessaga and V. L. Klee, Two topological properties of topological linear spaces, Israel J. Math. 2 (1964), 211-220.
  • 8. C. Bessaga and V. L. Klee, Every non-normable Fréchet space is homeomorphic with all its closed convex bodies, Math. Ann. 163 (1966), 161-166.
  • 9. C. Bessaga and A. Pelczynski, Some remarks on homeomorphisms of F-spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 10 (1962), 265-270.
  • 10. M. Fréchet, Les espaces abstraits, Gauthier-Villars, Paris, 1928.
  • 11. M. I. Kadec, On topological equivalence of separable Banach spaces, Dokl. Akad. Nauk SSSR 167 (1966), 23-25=Soviet Math. Dokl. 7 (1966), 319-322.
  • 12. M. I. Kadec, Proof of the topological equivalence of all separable infinite-dimensional Banach spaces, Functional Anal. and Appl. 1 (1967), 53-62.
  • 13. V. L. Klee, Convex bodies and periodic homeomorphisms in Hilbert space, Trans. Amer. Math. Soc. 74 (1953), 10-43.
  • 14. V. L. Klee, Some topological properties of convex sets, Trans. Amer. Math. Soc. 78 (1955), 30-45.
  • 15. V. L. Klee, A note on topological properties of normed linear spaces, Proc. Amer. Math. Soc. 7 (1956), 673-674.