Bayesian Analysis

Overall Objective Priors

James O. Berger, Jose M. Bernardo, and Dongchu Sun

Full-text: Open access

Abstract

In multi-parameter models, reference priors typically depend on the parameter or quantity of interest, and it is well known that this is necessary to produce objective posterior distributions with optimal properties. There are, however, many situations where one is simultaneously interested in all the parameters of the model or, more realistically, in functions of them that include aspects such as prediction, and it would then be useful to have a single objective prior that could safely be used to produce reasonable posterior inferences for all the quantities of interest. In this paper, we consider three methods for selecting a single objective prior and study, in a variety of problems including the multinomial problem, whether or not the resulting prior is a reasonable overall prior.

Article information

Source
Bayesian Anal., Volume 10, Number 1 (2015), 189-221.

Dates
First available in Project Euclid: 29 January 2015

Permanent link to this document
https://projecteuclid.org/euclid.ba/1422556416

Digital Object Identifier
doi:10.1214/14-BA915

Mathematical Reviews number (MathSciNet)
MR3420902

Zentralblatt MATH identifier
1335.62039

Keywords
Joint Reference Prior Logarithmic Divergence Multinomial Model Objective Priors Reference Analysis

Citation

Berger, James O.; Bernardo, Jose M.; Sun, Dongchu. Overall Objective Priors. Bayesian Anal. 10 (2015), no. 1, 189--221. doi:10.1214/14-BA915. https://projecteuclid.org/euclid.ba/1422556416


Export citation

References

  • Bar-Lev, S. K. and Reiser, B. (1982). An exponential subfamily which admits UMPU tests based on a single test statistic. The Annals of Statistics 10, 979–989.
  • Berger, J. O. and Bernardo, J. M. (1989). Estimating a product of means: Bayesian analysis with reference priors. Journal of the American Statistical Association 84, 200–207.
  • Berger, J. O. and Bernardo, J. M. (1992a). On the development of reference priors. Bayesian Statistics 4 (J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith, eds.) Oxford: University Press, 35–60 (with discussion).
  • Berger, J. O. and Bernardo, J. M. (1992b). Ordered group reference priors, with applications to multinomial problems. Biometrika 79, 25–37.
  • Berger, J. O., Bernardo, J. M. and Sun, D. (2009). The formal definition of reference priors. The Annals of Statistics 37, 905–938.
  • Berger, J. O., Bernardo, J. M. and Sun, D. (2012). Objective priors for discrete parameter spaces. Journal of the American Statistical Association 107, 636-648.
  • Berger, J. O. and Sun, D. (2008). Objective priors for the bivariate normal model. The Annals of Statistics 36, 963–982.
  • Bernardo, J. M. (1979). Reference posterior distributions for Bayesian inference. Journal of the Royal Statistical Society, Series B 41, 113–147 (with discussion).
  • Bernardo, J. M. (2005). Reference analysis. Bayesian Thinking: Modeling and Computation, Handbook of Statistics 25 (D. K. Dey and C. R Rao, eds). Amsterdam: Elsevier, 17–90.
  • Bernardo, J. M. (2011). Integrated objective Bayesian estimation and hypothesis testing. Bayesian Statistics 9 (J. M. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid, D. Heckerman, A. F. M. Smith and M. West, eds.) Oxford: University Press, 1–68 (with discussion).
  • Bernardo, J. M. (2006). Intrinsic point estimation of the normal variance. Bayesian Statistics and its Applications. (S. K. Upadhyay, U. Singh and D. K. Dey, eds.) New Delhi: Anamaya Pub, 110–121.
  • Bernardo, J. M. and Smith, A. F. M. (1994). Bayesian Theory. Chichester: Wiley.
  • Clarke, B. and Barron, A. (1994). Jeffreys’ prior is the reference prior under entropy loss. Journal of Statistical Planning and Inference 41, 37–60.
  • Clarke, B. and Yuan A. (2004). Partial information reference priors: derivation and interpretations. Journal of Statistical Planning and Inference 123, 313–345.
  • Consonni, G., Veronese, P. and Gutiérrez-Peña E. (2004). Reference priors for exponential families with simple quadratic variance function. J. Multivariate Analysis 88, 335–364.
  • Crowder, M. and Sweeting, T. (1989). Bayesian inference for a bivariate binomial distribution. Biometrika 76, 599–603.
  • Datta, G. S. and Ghosh, J. K. (1995a). On priors providing frequentist validity for Bayesian inference. Biometrika 82, 37–45.
  • Datta, G. S. and Ghosh, J. K. (1995b). Noninformative priors for maximal invariant parameter in group models. Test 4, 95–114.
  • Datta, G. S. and Ghosh, M. (1996). On the invariance of noninformative priors. The Annals of Statistics 24, 141–159.
  • Datta, G. S., Mukerjee, R., Ghosh, M. and Sweeting, T. J. (2000). Bayesian prediction with approximate frequentist validity. The Annals of Statistics 28, 1414–1426.
  • De Santis, F., Mortea, J. and Nardi, A. (2001). Jeffreys priors for survival models with censored data. Journal of Statistical Planning and Inference 99, 193–209.
  • De Santis, F. (2006). Power priors and their use in clinical trials. The American Statistician 60, 122–129.
  • Enis, P. and Geisser, S. (1971). Estimation of the probability that $Y<X$. Journal of the American Statistical Association 66, 162–168.
  • Ghosh, J. K. and Ramamoorthi, R. V. (2003). Bayesian Nonparametrics. New York: Springer
  • Ghosh, M., Mergel, V., and Liu, R. (2011). A general divergence criterion for prior selection. Annals of the Institute of Statistical Mathematics 60, 43–58.
  • Ghosh, M. (2011). Objective priors: An introduction for frequentists. Statistical Science 26, 187–202.
  • Ghosh, M. and Sun, D. (1998). Recent developments of Bayesian inference for stress-strength models. Frontiers in Reliability. Indian Association for Productivity Quality and Reliability (IAPQR), 143-158.
  • Gilks, W.R. and Wild, P. (1992). Adaptive rejection sampling for Gibbs sampling. Applied Statistics 41, 337–348.
  • Hartigan, J. A. (1964). Invariant prior distributions. Annals of Mathematical Statistics 35, 836–845.
  • Jeffreys, H. (1946). An invariant form for the prior probability in estimation problems. Proceedings of the Royal Society, Series A 186, 453–461.
  • Jeffreys, H. (1961). Theory of Probability (3rd edition). Oxford: Oxford University Press.
  • Kass, R. E. and Wasserman, L. (1996). The selection of prior distributions by formal rules. Journal of the American Statistical Association 91, 1343–1370.
  • Kullback, S. and R. A. Leibler, R.A. (1951). On information and suffiency. Annals of Mathematical Statistics 22, 79–86.
  • Laplace, P. S. (1812). Théorie Analytique des Probabilités. Paris: Courcier. Reprinted as Oeuvres Complètes de Laplace 7, 1878–1912. Paris: Gauthier-Villars.
  • Liseo, B. (1993). Elimination of nuisance parameters with reference priors. Biometrika 80, 295-304.
  • Liseo, B, and Loperfido, N, (2006). A note on reference priors for the scalar skew-normal distribution. Journal of Statistical Planning and Inference 136, 373–389.
  • Polson, N. and Wasserman, L. (1990). Prior distributions for the bivariate binomial. Biometrika 77, 901–904.
  • Sivaganesan, S. (1994). Discussion to “An Overview of Bayesian Robustness” by J. Berger. Test 3, 116–120.
  • Sivaganesan, S., Laud, P., Mueller, P. (2011). A Bayesian subgroup analysis using zero-inflated Polya-urn scheme. Sociological Methodology 30, 312–323.
  • Stein, C. (1959). An example of wide discrepancy between fiducial and confidence intervals. Annals of mathematical Statistics 30, 877–880.
  • Stein, C. (1964). Inadmissibility of the usual estimator for the variance of a normal distribution with unknown mean. Annals of the Institute of Statistical Mathematics 16, 155–160.
  • Stone, M. and Dawid, A. P. (1972). Un-Bayesian implications of improper Bayesian inference in routine statistical problems. Biometrika 59, 269–375.
  • Sun, D. (1994). Integrable expansions for posterior distributions for a two-parameter exponential family. The Annals of Statistics 22, 1808-1830.
  • Sun, D. and Ye, K. (1996). Frequentist validity of posterior quantiles for a two-parameter exponential family. Biometrika 83, 55-65.
  • Sun, D. and Berger, J. O. (1998). Reference priors under partial information. Biometrika 85, 55–71.
  • Sun, D. and Berger, J. O. (2007). Objective Bayesian analysis for the multivariate normal model. Bayesian Statistics 8 (J. M. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid, D. Heckerman, A. F. M. Smith and M. West, eds.) Oxford: University Press, 525–562 (with discussion).
  • Walker, S. G. and Gutiérrez-Peña, E. (2011). A decision-theoretical view of default priors Theory and Decision 70, 1–11.
  • Yang, R. and Berger, J. O. (1994). Estimation of a covariance matrix using the reference prior. The Annals of Statistics 22, 1195–2111.

See also

  • Related item: Siva Sivaganesan. Comment on Article by Berger, Bernardo, and Sun.
  • Related item: Manuel Mendoza, Eduardo Gutiérrez-Peña. Comment on Article by Berger, Bernardo, and Sun.
  • Related item: Judith Rousseau. Comment on Article by Berger, Bernardo, and Sun.
  • Related item: Gauri Sankar Datta, Brunero Liseo. Comment on Article by Berger, Bernardo, and Sun.
  • Related item: James O. Berger, Jose M. Bernardo, Dongchu Sun. Rejoinder.