Analysis & PDE

  • Anal. PDE
  • Volume 8, Number 3 (2015), 513-559.

Inverse scattering with partial data on asymptotically hyperbolic manifolds

Raphael Hora and Antônio Barreto

Full-text: Access denied (no subscription detected)

However, an active subscription may be available with MSP at msp.org/apde.

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We prove a local support theorem for the radiation fields on asymptotically hyperbolic manifolds and use it to show that the scattering operator restricted to an open subset of the boundary of the manifold determines the manifold and the metric modulo isometries that are equal to the identity on the open subset where the scattering operator is known.

Article information

Source
Anal. PDE, Volume 8, Number 3 (2015), 513-559.

Dates
Received: 3 September 2013
Revised: 23 December 2014
Accepted: 22 January 2015
First available in Project Euclid: 16 November 2017

Permanent link to this document
https://projecteuclid.org/euclid.apde/1510843094

Digital Object Identifier
doi:10.2140/apde.2015.8.513

Mathematical Reviews number (MathSciNet)
MR3353825

Zentralblatt MATH identifier
06448502

Subjects
Primary: 35P25: Scattering theory [See also 47A40] 58J50: Spectral problems; spectral geometry; scattering theory [See also 35Pxx]

Keywords
inverse scattering asymptotically hyperbolic manifolds

Citation

Hora, Raphael; Barreto, Antônio. Inverse scattering with partial data on asymptotically hyperbolic manifolds. Anal. PDE 8 (2015), no. 3, 513--559. doi:10.2140/apde.2015.8.513. https://projecteuclid.org/euclid.apde/1510843094


Export citation

References

  • S. Alinhac, “Unicité du problème de Cauchy pour des opérateurs du second ordre à symboles réels”, Ann. Inst. Fourier $($Grenoble$)$ 34:2 (1984), 89–109.
  • M. I. Belishev, “An approach to multidimensional inverse problems for the wave equation”, Dokl. Akad. Nauk SSSR 297:3 (1987), 524–527. In Russian; translated in Soviet Math. Dokl. 36:3 (1988), 172–182.
  • M. I. Belishev and Y. V. Kurylev, “To the reconstruction of a Riemannian manifold via its spectral data (BC-method)”, Comm. Partial Differential Equations 17:5-6 (1992), 767–804.
  • J.-M. Bouclet, “Absence of eigenvalue at the bottom of the continuous spectrum on asymptotically hyperbolic manifolds”, Ann. Global Anal. Geom. 44:2 (2013), 115–136.
  • F. G. Friedlander, “Radiation fields and hyperbolic scattering theory”, Math. Proc. Cambridge Philos. Soc. 88:3 (1980), 483–515.
  • F. G. Friedlander, “Notes on the wave equation on asymptotically Euclidean manifolds”, J. Funct. Anal. 184:1 (2001), 1–18.
  • C. R. Graham, “Volume and area renormalizations for conformally compact Einstein metrics”, pp. 31–42 in The Proceedings of the 19th Winter School “Geometry and Physics” (Srní, 1999), vol. 63, 2000.
  • C. R. Graham and M. Zworski, “Scattering matrix in conformal geometry”, Invent. Math. 152:1 (2003), 89–118.
  • C. Guillarmou and A. Sá Barreto, “Scattering and inverse scattering on ACH manifolds”, J. Reine Angew. Math. 622 (2008), 1–55.
  • C. Guillarmou and A. Sá Barreto, “Inverse problems for Einstein manifolds”, Inverse Probl. Imaging 3:1 (2009), 1–15.
  • S. Helgason, The Radon transform, 2nd ed., Progress in Mathematics 5, Birkhäuser, Boston, 1999. http://msp.org/idx/mr/2000m:44003MR 2000m:44003
  • L. H örmander, The analysis of linear partial differential operators, III: Pseudo-differential operators, Grundlehren der Mathematischen Wissenschaften 274, Springer, Berlin, 1994.
  • L. H örmander, The analysis of linear partial differential operators, IV: Fourier integral operators, Grundlehren der Mathematischen Wissenschaften 275, Springer, Berlin, 1994.
  • L. H örmander, “On the uniqueness of the Cauchy problem under partial analyticity assumptions”, pp. 179–219 in Geometrical optics and related topics (Cortona, 1996), edited by F. Colombini and N. Lerner, Progr. Nonlinear Differential Equations Appl. 32, Birkhäuser, Boston, 1997.
  • H. Isozaki and Y. Kurylev, Introduction to spectral theory and inverse problem on asymptotically hyperbolic manifolds, MSJ Memoirs 32, Mathematical Society of Japan, Tokyo, 2014.
  • H. Isozaki, Y. Kurylev, and M. Lassas, “Forward and inverse scattering on manifolds with asymptotically cylindrical ends”, J. Funct. Anal. 258:6 (2010), 2060–2118.
  • H. Isozaki, Y. Kurylev, and M. Lassas, “Spectral theory and inverse problem on asymptotically hyperbolic orbifolds”, preprint, 2013.
  • H. Isozaki, Y. Kurylev, and M. Lassas, “Recent progress of inverse scattering theory on non-compact manifolds”, pp. 143–163 in Inverse problems and applications, edited by P. Stefanov et al., Contemp. Math. 615, Amer. Math. Soc., Providence, RI, 2014.
  • M. S. Joshi and A. Sá Barreto, “Inverse scattering on asymptotically hyperbolic manifolds”, Acta Math. 184:1 (2000), 41–86.
  • A. Katchalov, Y. Kurylev, and M. Lassas, Inverse boundary spectral problems, Monographs and Surveys in Pure and Applied Mathematics 123, Chapman & Hall/CRC, Boca Raton, FL, 2001.
  • K. Krupchyk, Y. Kurylev, and M. Lassas, “Inverse spectral problems on a closed manifold”, J. Math. Pures Appl. $(9)$ 90:1 (2008), 42–59.
  • Y. V. Kurylev and M. Lassas, “Hyperbolic inverse problem with data on a part of the boundary”, pp. 259–272 in Differential equations and mathematical physics (Birmingham, AL, 1999), edited by R. Weikard and G. Weinstein, AMS/IP Stud. Adv. Math. 16, Amer. Math. Soc., Providence, RI, 2000.
  • Y. Kurylev and M. Lassas, “Hyperbolic inverse boundary-value problem and time-continuation of the non-stationary Dirichlet-to-Neumann map”, Proc. Roy. Soc. Edinburgh Sect. A 132:4 (2002), 931–949.
  • M. Lassas and L. Oksanen, “Inverse problem for the Riemannian wave equation with Dirichlet data and Neumann data on disjoint sets”, Duke Math. J. 163:6 (2014), 1071–1103.
  • M. Lassas, M. Taylor, and G. Uhlmann, “The Dirichlet-to-Neumann map for complete Riemannian manifolds with boundary”, Comm. Anal. Geom. 11:2 (2003), 207–221.
  • P. D. Lax and R. S. Phillips, “A local Paley–Wiener theorem for the Radon transform of $L\sb{2}$ functions in a non-Euclidean setting”, Comm. Pure Appl. Math. 35:4 (1982), 531–554.
  • P. D. Lax and R. S. Phillips, Scattering theory, 2nd ed., Pure and Applied Mathematics 26, Academic Press, Boston, 1989.
  • R. Mazzeo, “The Hodge cohomology of a conformally compact metric”, J. Differential Geom. 28:2 (1988), 309–339.
  • R. Mazzeo, “Unique continuation at infinity and embedded eigenvalues for asymptotically hyperbolic manifolds”, Amer. J. Math. 113:1 (1991), 25–45.
  • R. R. Mazzeo and R. B. Melrose, “Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature”, J. Funct. Anal. 75:2 (1987), 260–310.
  • R. Melrose, A. Sá Barreto, and A. Vasy, “Asymptotics of solutions of the wave equation on de Sitter–Schwarzschild space”, Comm. Partial Differential Equations 39:3 (2014), 512–529.
  • R. Melrose, A. Sá Barreto, and A. Vasy, “Analytic continuation and semiclassical resolvent estimates on asymptotically hyperbolic spaces”, Comm. Partial Differential Equations 39:3 (2014), 452–511.
  • L. Robbiano and C. Zuily, “Uniqueness in the Cauchy problem for operators with partially holomorphic coefficients”, Invent. Math. 131:3 (1998), 493–539.
  • A. Sá Barreto, “Radiation fields, scattering, and inverse scattering on asymptotically hyperbolic manifolds”, Duke Math. J. 129:3 (2005), 407–480.
  • A. Sá Barreto and J. Wunsch, “The radiation field is a Fourier integral operator”, Ann. Inst. Fourier $($Grenoble$)$ 55:1 (2005), 213–227.
  • D. Tataru, “Unique continuation for solutions to PDE's; between Hörmander's theorem and Holmgren's theorem”, Comm. Partial Differential Equations 20:5-6 (1995), 855–884.
  • D. Tataru, “Unique continuation for operators with partially analytic coefficients”, J. Math. Pures Appl. $(9)$ 78:5 (1999), 505–521.
  • A. Vasy, “Microlocal analysis of asymptotically hyperbolic spaces and high-energy resolvent estimates”, pp. 487–528 in Inverse problems and applications: inside out, II, edited by G. Uhlmann, Math. Sci. Res. Inst. Publ. 60, Cambridge Univ. Press, Cambridge, 2013.
  • A. Vasy and J. Wunsch, “Absence of super-exponentially decaying eigenfunctions of Riemannian manifolds with pinched negative curvature”, Math. Res. Lett. 12:5-6 (2005), 673–684.