The Annals of Statistics

On the Construction of Asymmetrical Orthogonal Arrays

A. S. Hedayat, Kewei Pu, and John Stufken

Full-text: Open access

Abstract

General techniques for the construction of asymmetrical orthogonal arrays of strength 2 are presented. These are then applied to special cases to obtain new families of such arrays. Among these are saturated main-effect plans based on $s^m$ runs with factors at $s^{\nu_i}$ levels, $i = 0, 1, \ldots, r,$ where $m \geq v_r, v_0 = 1, v_{i-1}$ divides $v_i, i = 1,2,\ldots, r$, and $s$ is a prime power.

Article information

Source
Ann. Statist., Volume 20, Number 4 (1992), 2142-2152.

Dates
First available in Project Euclid: 12 April 2007

Permanent link to this document
https://projecteuclid.org/euclid.aos/1176348908

Digital Object Identifier
doi:10.1214/aos/1176348908

Mathematical Reviews number (MathSciNet)
MR1193331

Zentralblatt MATH identifier
0784.62076

JSTOR
links.jstor.org

Subjects
Primary: 62K15: Factorial designs
Secondary: 05B15: Orthogonal arrays, Latin squares, Room squares

Keywords
Fractional factorial designs main-effect plans orthogonal arrays difference schemes resolvability Kronecker sums

Citation

Hedayat, A. S.; Pu, Kewei; Stufken, John. On the Construction of Asymmetrical Orthogonal Arrays. Ann. Statist. 20 (1992), no. 4, 2142--2152. doi:10.1214/aos/1176348908. https://projecteuclid.org/euclid.aos/1176348908


Export citation