The Annals of Probability

A microscopic model for Stefan’s melting and freezing problem

Claudio Landim and Glauco Valle

Full-text: Open access

Abstract

We study a class of one-dimensional interacting particle systems with random boundaries as a microscopic model for Stefan’s melting and freezing problem. We prove that under diffusive rescaling these particle systems exhibit a hydrodynamic behavior described by the solution of a Cauchy–Stefan problem.

Article information

Source
Ann. Probab., Volume 34, Number 2 (2006), 779-803.

Dates
First available in Project Euclid: 9 May 2006

Permanent link to this document
https://projecteuclid.org/euclid.aop/1147179989

Digital Object Identifier
doi:10.1214/009117905000000701

Mathematical Reviews number (MathSciNet)
MR2223958

Zentralblatt MATH identifier
1097.60082

Subjects
Primary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43]

Keywords
Exclusion processes Cauchy–Stefan problem hydrodynamic limit

Citation

Landim, Claudio; Valle, Glauco. A microscopic model for Stefan’s melting and freezing problem. Ann. Probab. 34 (2006), no. 2, 779--803. doi:10.1214/009117905000000701. https://projecteuclid.org/euclid.aop/1147179989


Export citation

References

  • Bertini, L., Buttà, P. and Rüdiger, B. (2000). Interface dynamics and Stefan problem from microscopic conservative model. Rend. Mat. Appl. 19 547--581.
  • Chayes, L. and Swindle, G. (1996). Hydrodynamic limits for one-dimensional particle systems with moving boundaries. Ann. Probab. 24 559--598.
  • Valle, G. (2003). Evolution of the interfaces in a two dimensional Potts model. Preprint.
  • Kipnis, C. and Landim, C. (1997). Scaling Limits of Interacting Particle Systems. Springer, Berlin.
  • Landim, C., Olla, S. and Volchan, S. (1998). Driven tracer particle and Einstein relation in one dimensional symmetric simple exclusion process. Comm. Math. Phys. 192 287--307.
  • Rezakhanlou, F. (1990). Hydrodynamic limit for a system with finite range interactions. Comm. Math. Phys. 129 445--480.
  • Rubinstein, L. I. (1971). The Stefan Problem. Amer. Math. Soc., Providence, RI.
  • Stefan, J. (1889). Über einige Probleme der Theorie der Wärmeleitung. S-B Wien Akad. Mat. Natur. 98 173--484.