The Annals of Probability

Dynamical stability of percolation for some interacting particle systems and ɛ-movability

Erik I. Broman and Jeffrey E. Steif

Full-text: Open access

Abstract

In this paper we will investigate dynamic stability of percolation for the stochastic Ising model and the contact process. We also introduce the notion of downward and upward ɛ-movability which will be a key tool for our analysis.

Article information

Source
Ann. Probab., Volume 34, Number 2 (2006), 539-576.

Dates
First available in Project Euclid: 9 May 2006

Permanent link to this document
https://projecteuclid.org/euclid.aop/1147179982

Digital Object Identifier
doi:10.1214/009117905000000602

Mathematical Reviews number (MathSciNet)
MR2223951

Zentralblatt MATH identifier
1107.82058

Subjects
Primary: 82C43: Time-dependent percolation [See also 60K35] 82B43: Percolation [See also 60K35] 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43]

Keywords
Percolation stochastic Ising models contact process

Citation

Broman, Erik I.; Steif, Jeffrey E. Dynamical stability of percolation for some interacting particle systems and ɛ -movability. Ann. Probab. 34 (2006), no. 2, 539--576. doi:10.1214/009117905000000602. https://projecteuclid.org/euclid.aop/1147179982


Export citation

References

  • Aizenman, M., Bricmont, J. and Lebowitz, J. L. (1987). Percolation of the minority spins in high-dimensional ising models. J. Statist. Phys. 49 859.
  • van den Berg, J., Meester, R. and White, D. G. (1997). Dynamic Boolean models. Stochastic Process. Appl. 69 247--257.
  • Bricmont, J., Lebowitz, J. L. and Maes, C. (1987). Percolation in strongly correlated systems: The massless Gaussian field. J. Statist. Phys. 48 1249--1268.
  • Broman, E. I., Häggström, O. and Steif, J. E. (2006). Refinements of stochastic domination. Probab. Theory Related Fields. To appear.
  • Coniglio, A., Nappi, C. R., Peruggi, F. and Russo, L. (1976). Percolation and phase transitions in the Ising model. Comm. Math. Phys. 51 315--323.
  • Durrett, R. (1988). Lecture Notes on Particle Systems and Percolation. Wadsworth and Brooks/Cole Advanced Books and Software, Pacific Grove, CA.
  • Fortuin, C. M., Kasteleyn, P. W. and Ginibre, J. (1971). Correlation inequalities on some partially ordered sets. Comm. Math. Phys. 22 89--103.
  • Georgii, H.-O. (1988). Gibbs Measures and Phase Transitions. de Gruyter, Berlin.
  • Georgii, H.-O., Häggström, O. and Maes, C. (2001). The random geometry of equilibrium phases. In Phase Transitions and Critical Phenomena 18 (C. Domb and J. L. Lebowitz, eds.) 1--142. Academic Press, San Diego, CA.
  • Grimmett, G. (1999). Percolation, 2nd ed. Springer, Berlin.
  • Häggström, O. (1996). The random-cluster model on a homogeneous tree. Probab. Theory Related Fields 104 231--253.
  • Häggström, O. (1997). Infinite clusters in dependent automorphism invariant percolation on trees. Ann. Probab. 25 1423--1436.
  • Häggström, O. (1998). Random-cluster representations in the study of phase transitions. Markov Process. Related Fields 4 275--321.
  • Häggström, O. (2000). Markov random fields and percolation on general graphs. Adv. in Appl. Probab. 32 39--66.
  • Häggström, O. Peres, Y. and Steif, J. E. (1997). Dynamical percolation. Ann. Inst. H. Poincare Probab. Statist. 33 497--528.
  • Higuchi, Y. (1993). Coexistence of infinite $(*)$-clusters. II. Ising percolation in two dimensions. Probab. Theory Related Fields 97 1--33.
  • Higuchi, Y. (1993). A sharp transition for the two-dimensional Ising percolation. Probab. Theory Related Fields 97 489--514.
  • Holley, R. (1974). Remarks on the FKG inequalities. Comm. Math. Phys. 36 227--231.
  • Liggett, T. M. (1985). Interacting Particle Systems. Springer, New York.
  • Liggett, T. M. (1994). Survival and coexistence in interacting particle systems. In Probability and Phase Transition (G. Grimmett, ed.) 209--226. Kluwer, Dordrecht.
  • Liggett, T. M., Schonmann, R. H. and Stacey, A. M. (1997). Domination by product measures. Ann. Probab. 25 71--95.
  • Liggett, T. M. and Steif, J. E. (2006). Stochastic domination: The contact process, Ising models and FKG measures. Ann. Inst. H. Poincaré Probab. Statist. To appear.
  • Schramm, O. and Steif, J. E. (2005). Quantitative noise sensitivity and exceptional times for percolation. Preprint.
  • Shields, P. C. (1996). The Ergodic Theory of Discrete Sample Paths. Amer. Math. Soc., Providence, RI.