The Annals of Probability

A Ray-Knight theorem for symmetric Markov processes

Nathalie Eisenbaum, Haya Kaspi, Michael B. Marcus, Jay Rosen, and Zhan Shi

Full-text: Open access


Let $X$ be a strongly symmetric recurrent Markov process with state space $S$ and let $L_t^x$ denote the local time of $X$ at $X \in S$. For a fixed element 0 in the state space S, let

$$ \tau(t) := \inf \{s: L^0_s > t \}. $$

The 0-potential density, $u_{0}(x, y)$, of the process $X$ killed at $T_0 = \inf \{s:X_s =0\}$ is symmetric and positive definite. Let $\eta = \{\eta_x; x \in S \}$ be a mean-zero Gaussian process with covariance

$$ E_\eta (\eta_x \eta_y ) = u_{\{0\}}(x, y). $$

The main result of this paper is the following generalization of the classical second Ray–Knight theorem: for any $b \in R$ and $t > 0$

$$ \{L_{\tau(t)} + 1/2 (\eta_x + b)^2; x \in S \} = \{ 1/2 ( \eta_x + \sqrt{2+ b^2})^2 ; x \in S \} \text{ in law}. $$

A version of this theorem is also given when $X$ is transient.

Article information

Ann. Probab., Volume 28, Number 4 (2000), 1781-1796.

First available in Project Euclid: 18 April 2002

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60J55: Local time and additive functionals

Local time Markovprocesses Ray –Knight theorem


Eisenbaum, Nathalie; Kaspi, Haya; Marcus, Michael B.; Rosen, Jay; Shi, Zhan. A Ray-Knight theorem for symmetric Markov processes. Ann. Probab. 28 (2000), no. 4, 1781--1796. doi:10.1214/aop/1019160507.

Export citation


  • [1] Bass, R., Eisenbaum, N. and Shi,(2000). The most visited sites of symmetric stable processes. Probab. Theory Related Fields 116 391-404.
  • [2] Bertoin, J. (1996). L´evy Processes. Cambridge Univ. Press.
  • [3] Dynkin E. B. (1983). Local times and quantum fields. In Seminar on Stochastic Processes 1982 (E. Çinlar, K. L. Chung and R. K. Getoor, eds.) 69-84. Birkh¨auser, Boston.
  • [4] Eisenbaum, N. (1994). Dynkin's isomorphism theorem and the Ray-Knight theorems. Probab. Theory Related Fields 99 321-335.
  • [5] Eisenbaum, N. (1997). Th´eor emes limites pour les temps locaux d'un processus stable sym´etrique. S´eminaire de Probabilit´es XXXI. Lecture Notes in Math. 1655 216- 224. Springer, Berlin. (Errata: S´eminaire de Probabilit´es XXXIII. Lecture Notes in Math.1709 417).
  • [6] Eisenbaum, N. and Kaspi, H. (1993). A necessary and sufficient condition for the Markov property of the local time process. Ann. Probab. 21 1591-1598.
  • [7] Fitzsimmons, P. and Pitman, J. H. (1999). Kac's moment formula and the Feyman-Kac formula for additive functionals of a Markov process. Stochastic Process Appl. 79 117-134.
  • [8] Marcus, M. B. (2000). The most visited sites of certain L´evy processes. J. Theoret. Probab. To appear.
  • [9] Marcus, M. B. and Rosen, J. (1992). Sample path properties of the local times of strongly symmetric Markovprocesses via Gaussian processes. Ann. Probab. 20 1603-1684.
  • [10] Marcus, M. B. and Rosen, J. (1996). Gaussian chaos and sample path properties of additive functionals of symmetric Markovprocesses Ann. Probab. 24 1130-1177.
  • [11] Marcus, M. B. and Rosen J. (2000). Gaussian processes and the local times of symmetric L´evy processes. In L´evy Processes and Their Applications (O. Barnsdorff-Nielsen, T. Mikosch and S. Resnick, eds.) Birkhauser, Boston. To appear.
  • [12] Mitro, J. B. (1979). Dual Markovfunctionals: applications of a useful auxiliary process.Wahrsch. Verw. Gebiete 48 976-114.
  • [13] Revuz, D. and Yor, M. (1999). Continuous Martingales and Brownian Motion, 3rd ed. Springer, Berlin.
  • [14] Walsh, J. B. (1972). Markovprocesses and their functionals in duality.Wahrsch. Verw. Gebiete 24 229-246.