## The Annals of Mathematical Statistics

- Ann. Math. Statist.
- Volume 41, Number 4 (1970), 1347-1348.

### Note on the Uniform Convergence of Density Estimates

#### Abstract

Let $X_1, X_2, \cdots$ be independent identically distributed random variables having a common distribution function $F$ and let $f_n(x) = (na_n)^{-1} \sum^n_{i = 1} k((x - X_i)/a_n)$ where $\{a_n\}$ is a sequence of positive numbers converging to zero and $k$ is a probability density function. If $\sum^\infty_{n = 1} \exp(- cna_n^2)$ is finite for all positive $c$ and if $k$ satisfies: (i) $k$ is continuous and of bounded variation on $(-\infty, \infty)$. (ii) $uk(u) \rightarrow 0$ as $u \rightarrow + \infty$ or $-\infty$. (iii) There exists a $\delta$ in (0, 1) such that $u(V^{-u^\delta}_{-\infty} (k) + V^\infty_{u^\delta} (k)) \rightarrow 0$ as $u \rightarrow \infty$. (iv) $\int|u| dk(u)$, the integral of $|u|$ with respect to the signed measure determined by $k$, is finite. Then the author [2] has established the following: THEOREM. A necessary and sufficient condition for $\lim_{n\rightarrow\infty} \sup_x|f_n(x) - g(x)| = 0$ with probability one for a function $g$ is that $g$ be the uniformly continuous derivative of $F$. The purpose of this note is to show that this theorem remains true if conditions (i)-(iv) on $k$ are replaced by the condition that $k$ is of bounded variation on $(-\infty, \infty)$.

#### Article information

**Source**

Ann. Math. Statist., Volume 41, Number 4 (1970), 1347-1348.

**Dates**

First available in Project Euclid: 27 April 2007

**Permanent link to this document**

https://projecteuclid.org/euclid.aoms/1177696910

**Digital Object Identifier**

doi:10.1214/aoms/1177696910

**Mathematical Reviews number (MathSciNet)**

MR266358

**Zentralblatt MATH identifier**

0201.21401

**JSTOR**

links.jstor.org

#### Citation

Schuster, Eugene F. Note on the Uniform Convergence of Density Estimates. Ann. Math. Statist. 41 (1970), no. 4, 1347--1348. doi:10.1214/aoms/1177696910. https://projecteuclid.org/euclid.aoms/1177696910