The Annals of Applied Statistics

Latent space models for multiview network data

Michael Salter-Townshend and Tyler H. McCormick

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

Social relationships consist of interactions along multiple dimensions. In social networks, this means that individuals form multiple types of relationships with the same person (e.g., an individual will not trust all of his/her acquaintances). Statistical models for these data require understanding two related types of dependence structure: (i) structure within each relationship type, or network view, and (ii) the association between views. In this paper, we propose a statistical framework that parsimoniously represents dependence between relationship types while also maintaining enough flexibility to allow individuals to serve different roles in different relationship types. Our approach builds on work on latent space models for networks [see, e.g., J. Amer. Statist. Assoc. 97 (2002) 1090–1098]. These models represent the propensity for two individuals to form edges as conditionally independent given the distance between the individuals in an unobserved social space. Our work departs from previous work in this area by representing dependence structure between network views through a multivariate Bernoulli likelihood, providing a representation of between-view association. This approach infers correlations between views not explained by the latent space model. Using our method, we explore 6 multiview network structures across 75 villages in rural southern Karnataka, India [Banerjee et al. (2013)].

Article information

Source
Ann. Appl. Stat., Volume 11, Number 3 (2017), 1217-1244.

Dates
Received: November 2014
Revised: April 2016
First available in Project Euclid: 5 October 2017

Permanent link to this document
https://projecteuclid.org/euclid.aoas/1507168828

Digital Object Identifier
doi:10.1214/16-AOAS955

Mathematical Reviews number (MathSciNet)
MR3709558

Zentralblatt MATH identifier
1380.62269

Keywords
Latent space model multiview relational data social network

Citation

Salter-Townshend, Michael; McCormick, Tyler H. Latent space models for multiview network data. Ann. Appl. Stat. 11 (2017), no. 3, 1217--1244. doi:10.1214/16-AOAS955. https://projecteuclid.org/euclid.aoas/1507168828


Export citation

References

  • Airoldi, E. M., Blei, D. M., Fienberg, S. E., Xing, E. P. and Jaakkola, T. (2006). Mixed membership stochastic block models for relational data with application to protein-protein interactions. In Proceedings of the International Biometrics Society Annual Meeting 15.
  • Airoldi, E., Blei, D., Fienberg, S. and Xing, E. (2008). Mixed-membership stochastic blockmodels. J. Mach. Learn. Res. 9 1981–2014.
  • Banerjee, A., Chandrasekhar, A., Duflo, E. and Jackson, M. O. (2013). The Diffusion of Microfinance. The Abdul Latif Jameel Poverty Action Lab Dataverse.
  • Bishop, Y. M. M., Fienberg, S. E. and Holland, P. W. (1975). Discrete Multivariate Analysis: Theory and Practice. The MIT Press, Cambridge, MA.
  • Butts, C. T. (2008). Social network analysis: A methodological introduction. Asian J. Soc. Psychol. 11 13–41.
  • Butts, C. T. (2010). Sna: Tools for Social Network Analysis. Univ. California, Irvine. R package Version 2.1-0.
  • Butts, C. T. and Carley, K. M. (2005). Some simple algorithms for structural comparison. Comput. Math. Organ. Theory 11 291–305.
  • Chang, J. and Blei, D. M. (2010). Hierarchical relational models for document networks. Ann. Appl. Stat. 4 124–150.
  • Cox, D. R. (1972). Regression models and life-tables. J. Roy. Statist. Soc. Ser. B 34 187–220.
  • Dai, B., Ding, S. and Wahba, G. (2013). Multivariate Bernoulli distribution. Bernoulli 19 1465–1483.
  • DiPrete, T. A., Gelman, A., McCormick, T., Teitler, J. and Zheng, T. (2011). Segregation in social networks based on acquaintanceship and trust1. Am. J. Sociol. 116 1234–1283.
  • Fienberg, S. E., Meyer, M. M. and Wasserman, S. S. (1985). Statistical analysis of multiple sociometric relations. J. Amer. Statist. Assoc. 80 51–67.
  • Gollini, I. and Murphy, T. B. (2016). Joint modeling of multiple network views. J. Comput. Graph. Statist. 25 246–265.
  • Greene, D. and Cunningham, P. (2013). Producing a unified graph representation from multiple social network views. In Proceedings of the 5th Annual ACM Web Science Conference (WebSci’13) 118–121.
  • Handcock, M. S., Raftery, A. E. and Tantrum, J. M. (2007). Model-based clustering for social networks. J. Roy. Statist. Soc. Ser. A 170 301–354.
  • Hoff, P. D. (2011a). Hierarchical multilinear models for multiway data. Comput. Statist. Data Anal. 55 530–543.
  • Hoff, P. D. (2011b). Separable covariance arrays via the Tucker product, with applications to multivariate relational data. Bayesian Anal. 6 179–196.
  • Hoff, P. D., Raftery, A. E. and Handcock, M. S. (2002). Latent space approaches to social network analysis. J. Amer. Statist. Assoc. 97 1090–1098.
  • Hoffman, M. D. and Gelman, A. (2014). The no-U-turn sampler: Adaptively setting path lengths in Hamiltonian Monte Carlo. J. Mach. Learn. Res. 15 1593–1623.
  • Holland, P. W. and Leinhardt, S. (1981). An exponential family of probability distributions for directed graphs. J. Amer. Statist. Assoc. 76 33–65.
  • Jackson, M. O., Rodriguez-Barraquer, T. and Tan, X. (2012). Social capital and social quilts: Network patterns of favor exchange. Am. Econ. Rev. 102 1857–1897.
  • Krivitsky, P. N., Handcock, M. S., Raftery, A. E. and Hoff, P. D. (2009). Representing degree distributions, clustering, and homophily in social networks with latent cluster random effects models. Soc. Networks 31 204–213.
  • McCormick, T. H. and Zheng, T. (2012). Latent demographic profile estimation in hard-to-reach groups. Ann. Appl. Stat. 6 1795–1813.
  • Pattison, P. and Wasserman, S. (1999). Logit models and logistic regressions for social networks: II. Multivariate relations. Br. J. Math. Stat. Psychol. 52 169–193.
  • Robins, G., Pattison, P., Kalish, Y. and Lusher, D. (2007). An introduction to exponential random graph ($p^{*}$) models for social networks. Soc. Networks 29 173–191.
  • Salter-Townshend, M. and McCormick, T. H. (2017). Supplement to “Latent space models for multiview network data.” DOI:10.1214/16-AOAS955SUPP.
  • Salter-Townshend, M. and Murphy, T. B. (2013). Variational Bayesian inference for the latent position cluster model for network data. Comput. Statist. Data Anal. 57 661–671.
  • Salter-Townshend, M., White, A., Gollini, I. and Murphy, T. B. (2012). Review of statistical network analysis: Models, algorithms, and software. Stat. Anal. Data Min. 5 260–264.
  • Sampson, S. F. (1969). Crisis in a cloister. Unpublished doctoral dissertation, Cornell University.
  • Strauss, D. and Ikeda, M. (1990). Pseudolikelihood estimation for social networks. J. Amer. Statist. Assoc. 85 204–212.
  • Stan Development Team (2013). Stan: A C${+}{+}$ library for probability and sampling. Version 2.
  • Wakefield, J. (2013). Bayesian and Frequentist Regression Methods. Springer, New York.

Supplemental materials

  • Supplement to “Latent space models for multiview network data”. Additional results and replication codes are provided in the supplementary materials.