The Annals of Applied Probability

How likely is an i.i.d. degree sequence to be graphical?

Richard Arratia and Thomas M. Liggett

Full-text: Open access

Abstract

Given i.i.d. positive integer valued random variables D1,…,Dn, one can ask whether there is a simple graph on n vertices so that the degrees of the vertices are D1,…,Dn. We give sufficient conditions on the distribution of Di for the probability that this be the case to be asymptotically 0, ½ or strictly between 0 and ½. These conditions roughly correspond to whether the limit of nP(Din) is infinite, zero or strictly positive and finite. This paper is motivated by the problem of modeling large communications networks by random graphs.

Article information

Source
Ann. Appl. Probab., Volume 15, Number 1B (2005), 652-670.

Dates
First available in Project Euclid: 1 February 2005

Permanent link to this document
https://projecteuclid.org/euclid.aoap/1107271663

Digital Object Identifier
doi:10.1214/105051604000000693

Mathematical Reviews number (MathSciNet)
MR2114985

Zentralblatt MATH identifier
1079.05023

Subjects
Primary: 05C07: Vertex degrees [See also 05E30] 05C80: Random graphs [See also 60B20] 60G70: Extreme value theory; extremal processes

Keywords
Simple graphs random graphs degree sequences extremes of i.i.d. random variables

Citation

Arratia, Richard; Liggett, Thomas M. How likely is an i.i.d. degree sequence to be graphical?. Ann. Appl. Probab. 15 (2005), no. 1B, 652--670. doi:10.1214/105051604000000693. https://projecteuclid.org/euclid.aoap/1107271663


Export citation

References

  • Aiello, W., Chung, F. and Lu, L. (2001). A random graph model for power law graphs. Experiment. Math. 10 53–66.
  • Albert, R. and Barabási, A. (2002). Statistical mechanics of complex networks. Rev. Modern Phys. 74 47–97.
  • Bollobás, B. (2001). Random Graphs, 2nd ed. Cambridge Univ. Press.
  • Bollobás, B. and Riordan, O. (2003). Mathematical results on scale-free random graphs. In Handbook of Graphs and Networks: From the Genome to the Internet (S. Bornholdt and H. G. Schuster, eds.) 1–34. Wiley–VCH, New York.
  • Choudum, S. A. (1986). A simple proof of the Erdős–Gallai theorem on graph sequences. Bull. Austral. Math. Soc. 33 67–70.
  • Durrett, R. (1996). Probability: Theory and Examples, 2nd ed. Duxbury, N. Scituate, MA.
  • Epstein, B. and Sobel, M. (1953). Life testing. J. Amer. Statist. Assoc. 48 486–502.
  • Erdős, P. and Gallai, T. (1960). Graphs with given degree of vertices. Mat. Lapok 11 264–274.
  • Janson, S., Luczak, T. and Rucinski, A. (2000). Random Graphs. Wiley, New York.
  • Jerrum, M., McKay, B. and Sinclair, A. (1992). When is a graphical sequence stable? In Random Graphs (A. Frieze and T. Luczak, eds.) 2 101–115. Wiley, New York.
  • Jerrum, M. and Sinclair, A. (1990). Fast uniform generation of regular graphs. Theoret. Comput. Sci. 73 91–100.
  • Leadbetter, M. R., Lindgren, G. and Rootzén, H. (1983). Extremes and Related Properties of Random Sequences and Processes. Springer, New York.
  • Pittel, B. (1999). Confirming two conjectures about the integer partitions. J. Combin. Theory Ser. A 88 123–135.
  • Rényi, A. (1953). On the theory of ordered samples. Acta Math. Acad. Sci. Hungar. 4 191–231.
  • Sierksma, G. and Hoogeveen, H. (1991). Seven criteria for integer sequences being graphic. J. Graph Theory 15 223–231.
  • Steger, A. and Wormald, N. (1999). Generating random graphs quickly. Combin. Probab. Comput. 8 377–396.