Algebra & Number Theory

Heights on squares of modular curves

Pierre Parent

Full-text: Access denied (no subscription detected)

However, an active subscription may be available with MSP at msp.org/ant.

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We develop a strategy for bounding from above the height of rational points of modular curves with values in number fields, by functions which are polynomial in the curve’s level. Our main technical tools come from effective Arakelov descriptions of modular curves and jacobians. We then fulfill this program in the following particular case:

If p is a not-too-small prime number, let X0(p) be the classical modular curve of level p over . Assume Brumer’s conjecture on the dimension of winding quotients of J0(p). We prove that there is a function b(p)=O(p5 logp) (depending only on p) such that, for any quadratic number field K, the j-height of points in X0(p)(K) which are not lifts of elements of X0+(p)() is less or equal to b(p).

Article information

Source
Algebra Number Theory, Volume 12, Number 9 (2018), 2065-2122.

Dates
Received: 15 July 2017
Revised: 29 May 2018
Accepted: 15 July 2018
First available in Project Euclid: 5 January 2019

Permanent link to this document
https://projecteuclid.org/euclid.ant/1546657275

Digital Object Identifier
doi:10.2140/ant.2018.12.2065

Mathematical Reviews number (MathSciNet)
MR3894429

Zentralblatt MATH identifier
06999503

Subjects
Primary: 11G18: Arithmetic aspects of modular and Shimura varieties [See also 14G35]
Secondary: 14G05: Rational points 14G40: Arithmetic varieties and schemes; Arakelov theory; heights [See also 11G50, 37P30]

Keywords
modular curves Arakelov geometry

Citation

Parent, Pierre. Heights on squares of modular curves. Algebra Number Theory 12 (2018), no. 9, 2065--2122. doi:10.2140/ant.2018.12.2065. https://projecteuclid.org/euclid.ant/1546657275


Export citation

References

  • A. Abbes, “Hauteurs et discrétude (d'après L. Szpiro, E. Ullmo et S. Zhang)”, pp. [exposé] 825, 4, pp. 141–166 in Séminaire Bourbaki, 1996/1997, Astérisque 245, Soc. Mat. de France, Paris, 1997.
  • A. Abbes and E. Ullmo, “Comparaison des métriques d'Arakelov et de Poincaré sur $X_0(N)$”, Duke Math. J. 80:2 (1995), 295–307.
  • A. Aryasomayajula, Bounds for Green's functions on hyperbolic Riemann surfaces of finite volume, Ph.D. thesis, Humboldt-Universität zu Berlin, 2013, https://edoc.hu-berlin.de/handle/18452/17480.
  • Y. Bilu and P. Parent, “Runge's method and modular curves”, Int. Math. Res. Not. 2011:9 (2011), 1997–2027.
  • Y. Bilu, P. Parent, and M. Rebolledo, “Rational points on $X^+_0(p^r)$”, Ann. Inst. Fourier $($Grenoble$)$ 63:3 (2013), 957–984.
  • C. Birkenhake and H. Lange, Complex abelian varieties, 2nd ed., Grundlehren der Mathematischen Wissenschaften 302, Springer, 2004.
  • J.-B. Bost, “Intrinsic heights of stable varieties and abelian varieties”, Duke Math. J. 82:1 (1996), 21–70.
  • J.-B. Bost, H. Gillet, and C. Soulé, “Heights of projective varieties and positive Green forms”, J. Amer. Math. Soc. 7:4 (1994), 903–1027.
  • P. Bruin, “Explicit bounds on automorphic and canonical Green functions of Fuchsian groups”, Mathematika 60:2 (2014), 257–306.
  • A. Brumer, “The rank of $J\sb 0(N)$”, pp. 3, 41–68 in Columbia University Number Theory Seminar (New York, 1992), Astérisque 228, Soc. Math. France, Paris, 1995.
  • S. Checcoli, F. Veneziano, and E. Viada, “The explicit Mordell conjecture for families of curves”, 2016.
  • T. Chinburg, “An introduction to Arakelov intersection theory”, pp. 289–307 in Arithmetic geometry (Storrs, Conneticut, 1984), edited by G. Cornell and J. H. Silverman, Springer, 1986.
  • P. Deligne and M. Rapoport, “Les schémas de modules de courbes elliptiques”, pp. 143–316 in Modular functions of one variable, II (Antwerp, 1972), edited by P. Deligne and W. Kuyk, Lecture Notes in Math. 349, Springer, Berlin, 1973.
  • A. Ducros, “Espaces analytiques $p$-adiques au sens de Berkovich”, pp. [exposé] 958, viii, pp. 137–176 in Séminaire Bourbaki, 2005/2006, Astérisque 311, Soc. Mat. de France, Paris, 2007.
  • B. Edixhoven and J.-M. Couveignes (editors), Computational aspects of modular forms and Galois representations, Annals of Mathematics Studies 176, Princeton University Press, 2011.
  • B. Edixhoven and R. de Jong, “Applying Arakelov theory”, pp. 187–201 in Computational aspects of modular forms and Galois representations, edited by B. Edixhoven and J.-M. Couveignes, Ann. of Math. Stud. 176, Princeton Univ. Press, 2011.
  • B. Edixhoven and R. de Jong, “Bounds for Arakelov invariants of modular curves”, pp. 217–256 in Computational aspects of modular forms and Galois representations, edited by B. Edixhoven and J.-M. Couveignes, Ann. of Math. Stud. 176, Princeton Univ. Press, 2011.
  • B. Edixhoven and R. de Jong, “Short introduction to heights and Arakelov theory”, pp. 79–94 in Computational aspects of modular forms and Galois representations, edited by B. Edixhoven and J.-M. Couveignes, Ann. of Math. Stud. 176, Princeton Univ. Press, 2011.
  • G. Faltings, “Diophantine approximation on abelian varieties”, Ann. of Math. $(2)$ 133:3 (1991), 549–576.
  • E. Gaudron and G. Rémond, “Polarisations et isogénies”, Duke Math. J. 163:11 (2014), 2057–2108.
  • E. Gaudron and G. Rémond, “Théorème des périodes et degrés minimaux d'isogénies”, Comment. Math. Helv. 89:2 (2014), 343–403.
  • P. Griffiths and J. Harris, Principles of algebraic geometry, Wiley, New York, 1978.
  • B. H. Gross, “Heegner points on $X_0(N)$”, pp. 87–105 in Modular forms (Durham, 1983), edited by R. A. Rankin, Horwood, Chichester, New York, 1984.
  • B. H. Gross, “Heegner points and the modular curve of prime level”, J. Math. Soc. Japan 39:2 (1987), 345–362.
  • B. H. Gross, “Heights and the special values of $L$-series”, pp. 115–187 in Number theory (Montreal, Que., 1985), edited by H. Kisilevsky and J. Labute, CMS Conf. Proc. 7, Amer. Math. Soc., Providence, RI, 1987.
  • M. Hindry and J. H. Silverman, Diophantine geometry, Graduate Texts in Mathematics 201, Springer, 2000.
  • J.-i. Igusa, Theta functions, Springer, 1972.
  • H. Iwaniec and P. Sarnak, “The non-vanishing of central values of automorphic $L$-functions and Landau–Siegel zeros”, Israel J. Math. 120:part A (2000), 155–177.
  • H. Iwaniec, W. Luo, and P. Sarnak, “Low lying zeros of families of $L$-functions”, Inst. Hautes Études Sci. Publ. Math. 91 (2000), 55–131.
  • R. de Jong, “Néron–Tate heights of cycles on Jacobians”, J. Algebraic Geom. 27:2 (2018), 339–381.
  • R. de Jong and F. Shokrieh, “Tropical moments of tropical Jacobians”, preprint, 2018.
  • J. Jorgenson and J. Kramer, “Bounds on canonical Green's functions”, Compos. Math. 142:3 (2006), 679–700.
  • M. A. Kenku and F. Momose, “Automorphism groups of the modular curves $X_0(N)$”, Compositio Math. 65:1 (1988), 51–80.
  • E. Kowalski, P. Michel, and J. Vanderkam, “Non-vanishing of high derivatives of automorphic $L$-functions at the center of the critical strip”, J. Reine Angew. Math. 526 (2000), 1–34.
  • E. Larson and D. Vaintrob, “Determinants of subquotients of Galois representations associated with abelian varieties”, J. Inst. Math. Jussieu 13:3 (2014), 517–559.
  • S. Le Fourn, “Surjectivity of Galois representations associated with quadratic $\mathbb Q$-curves”, Math. Ann. 365:1-2 (2016), 173–214.
  • Q. Liu, Algebraic geometry and arithmetic curves, Oxford Graduate Texts in Mathematics 6, Oxford University Press, 2002.
  • B. Mazur, “Modular curves and the Eisenstein ideal”, Inst. Hautes Études Sci. Publ. Math. 47 (1977), 33–186.
  • R. Menares, Nombres d'intersection arithmétiques et opérateurs de Hecke sur les courbes modulaires $X_0 (N)$, Ph.D. thesis, l'Université de Paris-Sud-Orsay, 2008, http://tel.archives-ouvertes.fr/tel-00360171.
  • R. Menares, “Correspondences in Arakelov geometry and applications to the case of Hecke operators on modular curves”, Manuscripta Math. 136:3-4 (2011), 501–543.
  • F. Merkl, “An upper bound for Green functions on Riemann surfaces”, pp. 203–215 in Computational aspects of modular forms and Galois representations, edited by B. Edixhoven and J.-M. Couveignes, Ann. of Math. Stud. 176, Princeton Univ. Press, 2011.
  • P. Michel and E. Ullmo, “Points de petite hauteur sur les courbes modulaires $X_0(N)$”, Invent. Math. 131:3 (1998), 645–674.
  • G. Mikhalkin and I. Zharkov, “Tropical curves, their Jacobians and theta functions”, pp. 203–230 in Curves and abelian varieties, edited by V. Alexeev et al., Contemp. Math. 465, Amer. Math. Soc., Providence, RI, 2008.
  • F. Momose, “Isogenies of prime degree over number fields”, Compositio Math. 97:3 (1995), 329–348.
  • L. Moret-Bailly, “Métriques permises”, pp. 29–87 in Seminar on arithmetic bundles: the Mordell conjecture (Paris, 1983/84), Astérisque 127, Soc. Mat. de France, Paris, 1985.
  • L. Moret-Bailly, “Pinceaux de variétés abéliennes”, pp. 266 Astérisque 129, Soc. Mat. de France, Paris, 1985.
  • L. Moret-Bailly, “Sur l'équation fonctionnelle de la fonction thêta de Riemann”, Compositio Math. 75:2 (1990), 203–217.
  • D. Mumford, “On the equations defining abelian varieties, I”, Invent. Math. 1 (1966), 287–354.
  • D. Mumford, Tata lectures on theta, I, Progress in Mathematics 28, Birkhäuser Boston, 1983.
  • D. Mumford, Tata lectures on theta, II, Progress in Mathematics 43, Birkhäuser Boston, 1984.
  • A. P. Ogg, “Hyperelliptic modular curves”, Bull. Soc. Math. France 102 (1974), 449–462.
  • A. P. Ogg, “Über die Automorphismengruppe von $X\sb{0}(N)$”, Math. Ann. 228:3 (1977), 279–292.
  • F. Pazuki, “Theta height and Faltings height”, Bull. Soc. Math. France 140:1 (2012), 19–49.
  • F. Pellarin, “Sur une majoration explicite pour un degré d'isogénie liant deux courbes elliptiques”, Acta Arith. 100:3 (2001), 203–243.
  • P. Philippon, “Sur des hauteurs alternatives, II”, Ann. Inst. Fourier $($Grenoble$)$ 44:4 (1994), 1043–1065.
  • G. Rémond, “Décompte dans une conjecture de Lang”, Invent. Math. 142:3 (2000), 513–545.
  • G. Rémond, “Nombre de points rationnels des courbes”, Proc. Lond. Math. Soc. $(3)$ 101:3 (2010), 759–794.
  • E. Royer, “Petits zéros de fonctions $L$ de formes modulaires”, Acta Arith. 99:2 (2001), 147–172.
  • C. Soulé, “Géométrie d'Arakelov et théorie des nombres transcendants”, pp. 355–371 in Journées Arithmétiques (Luminy, 1989), Astérisque 198-200, Soc. Mat. de France, 1991.
  • A. Thuillier, Théorie du potentiel sur les courbes en géométrie non archimédienne. Applications à la théorie d'Arakelov, Ph.D. thesis, Université de Rennes 1, 2005, https://tel.archives-ouvertes.fr/file/index/docid/48750/filename/tel-00010990.pdf.
  • E. Ullmo, “Hauteur de Faltings de quotients de $J_0(N)$, discriminants d'algèbres de Hecke et congruences entre formes modulaires”, Amer. J. Math. 122:1 (2000), 83–115.
  • R. Wilms, “New explicit formulas for Faltings' delta-invariant”, Invent. Math. 209:2 (2017), 481–539.
  • J. G. Zarhin and J. I. Manin, “Height on families of abelian varieties”, Mat. Sb. $($N.S.$)$ 89(131) (1972), 171–181, 349. In Russian; translated in Math. USSR-Sb 18 (1972), 169–179.
  • S. Zhang, “Admissible pairing on a curve”, Invent. Math. 112:1 (1993), 171–193.
  • S. Zhang, “Positive line bundles on arithmetic varieties”, J. Amer. Math. Soc. 8:1 (1995), 187–221.