Algebra & Number Theory

The nef cone volume of generalized Del Pezzo surfaces

Ulrich Derenthal, Michael Joyce, and Zachariah Teitler

Full-text: Open access

Abstract

We compute a naturally defined measure of the size of the nef cone of a Del Pezzo surface. The resulting number appears in a conjecture of Manin on the asymptotic behavior of the number of rational points of bounded height on the surface. The nef cone volume of a Del Pezzo surface Y with (2)-curves defined over an algebraically closed field is equal to the nef cone volume of a smooth Del Pezzo surface of the same degree divided by the order of the Weyl group of a simply-laced root system associated to the configuration of (2)-curves on Y. When Y is defined over an arbitrary perfect field, a similar result holds, except that the associated root system is no longer necessarily simply-laced.

Article information

Source
Algebra Number Theory, Volume 2, Number 2 (2008), 157-182.

Dates
Received: 27 July 2007
Revised: 19 October 2007
Accepted: 11 December 2007
First available in Project Euclid: 20 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.ant/1513797228

Digital Object Identifier
doi:10.2140/ant.2008.2.157

Mathematical Reviews number (MathSciNet)
MR2377367

Zentralblatt MATH identifier
1158.14032

Subjects
Primary: 14J26: Rational and ruled surfaces
Secondary: 14C20: Divisors, linear systems, invertible sheaves 14G05: Rational points

Keywords
Del Pezzo surface Manin's conjecture nef cone root system

Citation

Derenthal, Ulrich; Joyce, Michael; Teitler, Zachariah. The nef cone volume of generalized Del Pezzo surfaces. Algebra Number Theory 2 (2008), no. 2, 157--182. doi:10.2140/ant.2008.2.157. https://projecteuclid.org/euclid.ant/1513797228


Export citation

References

  • V. V. Batyrev and Y. I. Manin, “Sur le nombre des points rationnels de hauteur borné des variétés algébriques”, Math. Ann. 286:1-3 (1990), 27–43.
  • V. V. Batyrev and O. N. Popov, “The Cox ring of a del Pezzo surface”, pp. 85–103 in Arithmetic of higher-dimensional algebraic varietiesi (Palo Alto, CA, 2002), Progr. Math. 226, Birkhäuser Boston, Boston, MA, 2004.
  • V. V. Batyrev and Y. Tschinkel, “Rational points of bounded height on compactifications of anisotropic tori”, Internat. Math. Res. Notices 1995:12 (1995), 591–635.
  • V. V. Batyrev and Y. Tschinkel, “Rational points on some Fano cubic bundles”, C. R. Acad. Sci. Paris Sér. I Math. 323:1 (1996), 41–46.
  • S. Boucksom, J.-P. Demailly, M. Paun, and T. Peternell, “The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension”, preprint, 2004.
  • N. Bourbaki, Lie groups and Lie algebras. Chapters 4–6, Elements of Mathematics (Berlin), Springer, Berlin, 2002. Translated from the 1968 French original by Andrew Pressley.
  • J.-L. Colliot-Thélène and J.-J. Sansuc, “La descente sur les variétés rationnelles, II”, Duke Math. J. 54:2 (1987), 375–492.
  • P. Corn, “Del Pezzo surfaces of degree 6”, Math. Res. Lett. 12:1 (2005), 75–84. http://www.ams.org/mathscinet-getitem?mr=2006d:14035MR 2006d.14035
  • M. Demazure, “Surfaces de Del Pezzo, I – V”, pp. 21–69 in Séminaire sur les singularités des surfaces (Palaiseau, 1976–1977), edited by M. Demazure et al., Lecture Notes in Mathematics 777, Springer, Berlin, 1980.
  • U. Derenthal, “On a constant arising in Manin's conjecture for del Pezzo surfaces”, Math. Res. Lett. 14:3 (2007), 481–489.
  • B. C. Hall, Lie groups, Lie algebras, and representations, Graduate Texts in Mathematics 222, Springer, New York, 2003.
  • B. Harbourne, “Blowings-up of ${\bf P}\sp 2$ and their blowings-down”, Duke Math. J. 52:1 (1985), 129–148.
  • R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics 52, Springer, New York, 1977.
  • B. Hassett and Y. Tschinkel, “Universal torsors and Cox rings”, pp. 149–173 in Arithmetic of higher-dimensional algebraic varieties (Palo Alto, CA, 2002), Progr. Math. 226, Birkhäuser Boston, Boston, MA, 2004.
  • M. Hindry and J. H. Silverman, Diophantine geometry: an introduction, Graduate Texts in Math. 201, Springer, New York, 2000.
  • J. E. Humphreys, Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics 29, Cambridge University Press, Cambridge, 1990.
  • V. G. Kac, Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990.
  • M. Lahyane and B. Harbourne, “Irreducibility of $-1$-classes on anticanonical rational surfaces and finite generation of the effective monoid”, Pacific J. Math. 218:1 (2005), 101–114.
  • R. Lazarsfeld, Positivity in algebraic geometry, II: Positivity for vector bundles, and multiplier ideals, Ergebnisse der Mathematik (3) 49, Springer, Berlin, 2004.
  • Y. I. Manin, Cubic forms: Algebra, geometry, arithmetic, 2nd ed., North-Holland Mathematical Library 4, North-Holland, Amsterdam, 1986.
  • E. Peyre, “Hauteurs et mesures de Tamagawa sur les variétés de Fano”, Duke Math. J. 79:1 (1995), 101–218.
  • G. Pfeiffer, “The subgroups of $\mathcal{S}_5$”, 2007, http://schmidt.nuigalway.ie/subgroups/s5.pdf.
  • T. Urabe, “On singularities on degenerate del Pezzo surfaces of degree 1, 2”, pp. 587–591 in Singularities (Arcata, CA, 1981), vol. 2, edited by P. Orlik, Proc. Sympos. Pure Math. 40, Amer. Math. Soc., Providence, R.I., 1983.