Annales de l'Institut Henri Poincaré, Probabilités et Statistiques

Edge of spiked beta ensembles, stochastic Airy semigroups and reflected Brownian motions

Pierre Yves Gaudreau Lamarre and Mykhaylo Shkolnikov

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


We access the edge of Gaussian beta ensembles with one spike by analyzing high powers of the associated tridiagonal matrix models. In the classical cases $\beta =1,2,4$, this corresponds to studying the fluctuations of the largest eigenvalues of additive rank one perturbations of the GOE/GUE/GSE random matrices. In the infinite-dimensional limit, we arrive at a one-parameter family of random Feynman–Kac type semigroups, which features the stochastic Airy semigroup of Gorin and Shkolnikov (Ann. Probab. 46 (2018) 2287–2344) as an extreme case. Our analysis also provides Feynman–Kac formulas for the spiked stochastic Airy operators, introduced by Bloemendal and Virág (Probab. Theory Related Fields 156 (2013) 795–825). The Feynman–Kac formulas involve functionals of a reflected Brownian motion and its local times, thus, allowing to study the limiting operators by tools of stochastic analysis. We derive a first result in this direction by obtaining a new distributional identity for a reflected Brownian bridge conditioned on its local time at zero. A key feature of our proof consists of a novel strong invariance result for certain non-negative random walks and their occupation times that is based on the Skorokhod reflection map.


Nous accédons à l’extrémité du spectre des ensembles bêta gaussiens avec perturbation de rang un par l’entremise de grandes puissances des matrices tridiagonales qui y sont associées. Pour les valeurs traditionnelles $\beta =1,2,4$, ceci correspond à l’étude des fluctuations des valeurs propres maximales des matrices aléatoires GOE/GUE/GSE assujetties à une perturbation additive de rang un. En dimensions infinies, nos résultats nous mènent vers une famille de semi-groupes de type Feynman–Kac qui, dans un cas extrême, correspond au stochastic Airy semigroup introduit par Gorin et Shkolnikov (Ann. Probab. 46 (2018) 2287–2344). De plus, nos résultats ont pour corollaire des formules de Feynman–Kac pour les spiked stochastic Airy operators introduits par Bloemendal et Virág (Probab. Theory Related Fields 156 (2013) 795–825). Ces formules sont exprimées à l’aide de certaines fonctionnelles du mouvement brownien réfléchi et de ses temps locaux. Ce faisant, les opérateurs en question peuvent être étudiés à l’aide du calcul stochastique. Nous obtenons un premier résultat dans cette lignée en démontrant une nouvelle identité décrivant la distribution du mouvement brownien réfléchi ayant été conditionné sur son temps local à zéro. La principale innovation de notre démonstration consiste en la preuve d’un nouveau résultat sur l’approximation forte du mouvement brownien réfléchi et de son temps local par une marche aléatoire non négative en utilisant la méthode de réflexion de Skorokhod.

Article information

Ann. Inst. H. Poincaré Probab. Statist., Volume 55, Number 3 (2019), 1402-1438.

Received: 2 October 2017
Revised: 29 April 2018
Accepted: 27 July 2018
First available in Project Euclid: 25 September 2019

Permanent link to this document

Digital Object Identifier

Primary: 60B20: Random matrices (probabilistic aspects; for algebraic aspects see 15B52) 60H25: Random operators and equations [See also 47B80] 47D08: Schrödinger and Feynman-Kac semigroups 60J55: Local time and additive functionals

Beta ensembles Feynman–Kac formulas Local times Low rank perturbations Moments method Operator limits Path transformations Random tridiagonal matrices Reflected Brownian motions Skorokhod map Stochastic Airy semigroups Strong invariance principles


Lamarre, Pierre Yves Gaudreau; Shkolnikov, Mykhaylo. Edge of spiked beta ensembles, stochastic Airy semigroups and reflected Brownian motions. Ann. Inst. H. Poincaré Probab. Statist. 55 (2019), no. 3, 1402--1438. doi:10.1214/18-AIHP923.

Export citation


  • [1] G. Anderson, A. Guionnet and O. Zeitouni. An Introduction to Random Matrices. Cambridge Studies in Advanced Mathematics 118. Cambridge University Press, Cambridge, 2010.
  • [2] J. Baik, G. Ben Arous and S. Péché. Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices. Ann. Probab. 33 (2005) 1643–1697.
  • [3] R. Bass and D. Khoshnevisan. Strong approximations to Brownian local time. Progr. Probab. 33 (1992) 43–65.
  • [4] R. F. Bass and D. Khoshnevisan. Laws of the iterated logarithm for local times of the empirical process. Ann. Probab. 23 (1995) 388–399.
  • [5] K. E. Bassler, P. J. Forrester and N. E. Frankel. Edge effects in some perturbations of the Gaussian unitary ensemble. J. Math. Phys. 51 (2010), Article ID 123305.
  • [6] R. N. Bhattacharya and R. R. Rao. Normal Approximation and Asymptotic Expansions. John Wiley & Sons, New York, 1976.
  • [7] P. Billingsley. Convergence of Probability Measures, 2nd edition. John Wiley & Sons, New York, 1999.
  • [8] A. Bloemendal and B. Virág. Limits of spiked random matrices I. Probab. Theory Related Fields 156 (2013) 795–825.
  • [9] A. Bloemendal and B. Virág. Limits of spiked random matrices II. Ann. Probab. 44 (2016) 2726–2769.
  • [10] X. Chen. Random Walk Intersections: Large Deviations and Related Topics. Mathematical Surveys and Monographs 157. American Mathematical Society, Providence, 2010.
  • [11] R. Dudley. Uniform Central Limit Theorems. Cambridge Studies in Advanced Mathematics 63. Cambridge University Press, Cambridge, 1999.
  • [12] I. Dumitriu and A. Edelman. Matrix models for beta ensembles. J. Math. Phys. 43 (2002) 5830–5847.
  • [13] A. Edelman. Stochastic differential equations and random matrices. In SIAM Conference on Applied Linear Algebra. The College of William and Mary, Williamsburg, 2003. Available at
  • [14] A. Edelman and B. Sutton. From random matrices to stochastic operators. J. Stat. Phys. 127 (2007) 1121–1165.
  • [15] P. Forrester. Log-Gases and Random Matrices. London Mathematical Society Monographs Series 34. Princeton University Press, Princeton, 2010.
  • [16] V. Gorin and M. Shkolnikov. Stochastic Airy semigroup through tridiagonal matrices. Ann. Probab. 46 (2018) 2287–2344. Available at arXiv:1601.06800v1.
  • [17] Y. Hariya. A pathwise interpretation of the Gorin–Shkolnikov identity. Electron. Commun. Probab. 21 (2016) 1–6.
  • [18] D. Holcomb and G. R. M. Flores. Edge scaling of the $\beta $-Jacobi ensemble. J. Stat. Phys. 149 (2012) 1136–1160.
  • [19] S. Jacquot and B. Valko. Bulk scaling limit of the Laguerre ensemble. Electron. J. Probab. 11 (2011) 314–346.
  • [20] A. Javanmarda, A. Montanari and F. Ricci-Tersenghi. Phase transitions in semidefinite relaxations. Proc. Natl. Acad. Sci. USA 113 (2016) E2218–E2223.
  • [21] R. L. Karandikar. On pathwise stochastic integration. Stochastic Process. Appl. 57 (1995) 11–18.
  • [22] R. Kozhan. Rank one non-Hermitian perturbations of Hermitian $\beta $-ensembles of random matrices. J. Stat. Phys. 168 (2017) 92–108.
  • [23] M. Krishnapur, B. Rider and B. Virág. Universality of the stochastic Airy operator. Comm. Pure Appl. Math. 69 (2016) 145–199.
  • [24] G. Lawler and V. Limic. Random Walk: A Modern Introduction. Cambridge Studies in Advanced Mathematics 123. Cambridge University Press, Cambridge, 2010.
  • [25] P. Lax. Functional Analysis. John Wiley & Sons, New York, 2002.
  • [26] I. G. Macdonald. Symmetric Functions and Hall Polynomials, 2nd edition. The Clarendon Press, Oxford University Press, New York, 2015.
  • [27] S. Péché. The largest eigenvalue of small rank perturbations of Hermitian random matrices. Probab. Theory Related Fields 134 (2006) 127–173.
  • [28] J. Pitman. The distribution of local times of a Brownian bridge. In Séminaire de Probabilités XXXIII 388–394. Lecture Notes in Math. 1709. Springer-Verlag, Berlin, 1999.
  • [29] J. Pitman. The SDE solved by local times of a Brownian excursion or bridge derived from the height profile of a random tree or forest. Ann. Probab. 27 (1999) 261–283.
  • [30] J. Pitman. Combinatorial Stochastic Processes. Lecture Notes in Math. 1875. Springer-Verlag, Berlin, 2006.
  • [31] J. Ramírez and B. Rider. Diffusion at the random matrix hard edge. Comm. Math. Phys. 288 (2009) 887–906.
  • [32] J. Ramírez, B. Rider and B. Virág. Beta ensembles, stochastic Airy spectrum, and a diffusion. J. Amer. Math. Soc. 24 (2011) 919–944.
  • [33] D. Revuz and M. Yor. Continuous Martingales and Brownian Motion, 3rd edition. Grundlehren der Mathematischen Wissenschaften 293. Springer-Verlag, Berlin, 1999.
  • [34] B. Rider and P. Waters. Universality of the stochastic Bessel operator. Preprint, 2016. Available at arXiv:1610.01637.
  • [35] H. F. Trotter. A property of Brownian motion paths. Illinois J. Math. 2 (1958) 425–433.
  • [36] B. Valkó and B. Virág. Continuum limits of random matrices and the Brownian carousel. Invent. Math. 177 (2009) 463–508.
  • [37] B. Valkó and B. Virág. Operator limit of the circular beta ensemble, 2017. Available at arXiv:1710.06988v1.
  • [38] B. Valkó and B. Virág. The sine$_{\beta }$ operator. Invent. Math. 209 (2017) 275–327.