Algebraic & Geometric Topology

Representation theory for the Križ model

Samia Ashraf, Haniya Azam, and Barbu Berceanu

Full-text: Open access

Abstract

The natural action of the symmetric group on the configuration spaces F(X,n) induces an action on the Križ model E(X,n). The representation theory for this complex is studied and a big acyclic subcomplex which is Sn–invariant is described.

Article information

Source
Algebr. Geom. Topol., Volume 14, Number 1 (2014), 57-90.

Dates
Received: 4 May 2012
Revised: 4 July 2013
Accepted: 4 July 2013
First available in Project Euclid: 19 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.agt/1513715794

Digital Object Identifier
doi:10.2140/agt.2014.14.57

Mathematical Reviews number (MathSciNet)
MR3158753

Zentralblatt MATH identifier
1281.55015

Subjects
Primary: 55R80: Discriminantal varieties, configuration spaces 20C30: Representations of finite symmetric groups
Secondary: 55P62: Rational homotopy theory 13A50: Actions of groups on commutative rings; invariant theory [See also 14L24]

Keywords
representations of symmetric groups configuration spaces rational model

Citation

Ashraf, Samia; Azam, Haniya; Berceanu, Barbu. Representation theory for the Križ model. Algebr. Geom. Topol. 14 (2014), no. 1, 57--90. doi:10.2140/agt.2014.14.57. https://projecteuclid.org/euclid.agt/1513715794


Export citation

References

  • V I Arnold, The cohomology ring of the group of dyed braids, Mat. Zametki 5 (1969) 227–231
  • S Ashraf, H Azam, B Berceanu, Representation stability of power sets and square free polynomials
  • S Ashraf, B Berceanu, Cohomology of $3$–points configuration spaces of complex projective spaces
  • S Ashraf, B Berceanu, Equivariant Lefschetz structure of the Križ model, in preparation
  • H Azam, B Berceanu, Cohomology of configuration spaces of Riemann surfaces, in preparation
  • B Berceanu, M Markl, S Papadima, Multiplicative models for configuration spaces of algebraic varieties, Topology 44 (2005) 415–440
  • G M Bergman, The diamond lemma for ring theory, Adv. in Math. 29 (1978) 178–218
  • R Bezrukavnikov, Koszul DG–algebras arising from configuration spaces, Geom. Funct. Anal. 4 (1994) 119–135
  • T Church, B Farb, Representation theory and homological stability, Adv. Math. 245 (2013) 250–314
  • F R Cohen, L R Taylor, Computations of Gel${}^\prime$fand–Fuks cohomology, the cohomology of function spaces, and the cohomology of configuration spaces, from: “Geometric applications of homotopy theory, I”, (M G Barratt, M E Mahowald, editors), Lecture Notes in Math. 657, Springer, Berlin (1978) 106–143
  • F R Cohen, L R Taylor, Configuration spaces: Applications to Gelfand–Fuks cohomology, Bull. Amer. Math. Soc. 84 (1978) 134–136
  • P Deligne, P Griffiths, J Morgan, D Sullivan, Real homotopy theory of Kähler manifolds, Invent. Math. 29 (1975) 245–274
  • E M Feichtner, G M Ziegler, The integral cohomology algebras of ordered configuration spaces of spheres, Doc. Math. 5 (2000) 115–139
  • W Fulton, J Harris, Representation theory, Graduate Texts in Mathematics 129, Springer, New York (1991)
  • W Fulton, R MacPherson, A compactification of configuration spaces, Ann. of Math. 139 (1994) 183–225
  • I Križ, On the rational homotopy type of configuration spaces, Ann. of Math. 139 (1994) 227–237
  • P Lambrechts, D Stanley, A remarkable DG module model for configuration spaces, Algebr. Geom. Topol. 8 (2008) 1191–1222
  • W Ledermann, Introduction to group characters, 2nd edition, Cambridge Univ. Press (1987)
  • G I Lehrer, L Solomon, On the action of the symmetric group on the cohomology of the complement of its reflecting hyperplanes, J. Algebra 104 (1986) 410–424
  • P Orlik, H Terao, Arrangements of hyperplanes, Grundl. Math. Wissen. 300, Springer, Berlin (1992)
  • J-P Serre, Linear representations of finite groups, Graduate Texts in Mathematics 42, Springer, New York (1977)
  • R P Stanley, Some aspects of groups acting on finite posets, J. Combin. Theory Ser. A 32 (1982) 132–161