Arkiv för Matematik

James type results for polynomials and symmetric multilinear forms

Maria D. Acosta, Julio Becerra Guerrero, and Manuel Ruiz Galán

Full-text: Open access

Abstract

We prove versions of James' weak compactness theorem for polynomials and symmetric multilinear forms of finite type. We also show that a Banach space X is reflexive if and only if it admits and equivalent norm such that there exists x0≠0 in X and a weak-*-open subset A of the dual space, satisfying that x*x0 attains its numerical radius. for each x* in A.

Note

The first and third author were supported in part by D.G.E.S., project no. BFM 2000-1467. The second author was partially supported by Junta de Andalucía Grant FQM0199.

Article information

Source
Ark. Mat., Volume 42, Number 1 (2004), 1-11.

Dates
Received: 30 September 2002
First available in Project Euclid: 31 January 2017

Permanent link to this document
https://projecteuclid.org/euclid.afm/1485898835

Digital Object Identifier
doi:10.1007/BF02432907

Mathematical Reviews number (MathSciNet)
MR2056542

Zentralblatt MATH identifier
1062.46015

Rights
2004 © Institut Mittag-Leffler

Citation

Acosta, Maria D.; Guerrero, Julio Becerra; Galán, Manuel Ruiz. James type results for polynomials and symmetric multilinear forms. Ark. Mat. 42 (2004), no. 1, 1--11. doi:10.1007/BF02432907. https://projecteuclid.org/euclid.afm/1485898835


Export citation

References

  • Acosta, M. D., Every real Banach space can be renormed to satisfy the densenes of numerical radius attaining operators, Israel J. Math. 81 (1993), 273–280.
  • Acosta, M. D., On multilinear mappings attaining their norms, Studia Math. 131 (1998), 155–165.
  • Acosta, M. D., Aguirre, F. and Payá, R., There is no bilinear Bishop-Phelps theorem, Israel J. Math. 93 (1996), 221–227.
  • Acosta, M. D., Becerra Guerrero, J. and Ruiz Galán, M., Dual spaces generated by the interior of the set of norm attaining functionals, Studia Math. 149 (2002), 175–183.
  • Acosta, M. D., Becerra Guerrero, J. and Ruiz Galán, M., Norm attaining operators and James' Theorem, in Recent Progress in Functional Analysis (Valencia, 2000) (Bierstedt, K. D., Bonet, J., Maestre, M. and Schmets, J., eds.), North-Holland Math. Stud. 189, pp. 215–224, North-Holland, Amsterdam, 2001.
  • Acosta, M. D. and Payá, R., Numerical radius attaining operators and the Radon-Nikodym property, Bull. London Math. Soc. 25 (1993), 67–73.
  • Acosta, M. D. and Ruiz Galán, M., New characterizations of the reflexivity in terms of the set of norm attaining functionals, Canad. Math. Bull. 41 (1998), 279–289.
  • Acosta, M. D. and Ruiz Galán, M., Norm attaining operators and reflexivity, Rend. Circ. Mat. Palermo 56 (1998), 171–177.
  • Acosta, M. D. and Ruiz Galán, M., A version of James' Theorem for numerical radius, Bull. London Math. Soc. 31 (1999), 67–74.
  • Acosta, M. D. and Ruiz Galán, M., Reflexive spaces and numerical radius attaining operators, Extracta Math. 15 (2000), 247–255.
  • Alaminos, J., Choi, Y. S., Kim, S. G. and Payá, R., Norm attaining bilinear forms on spaces of continuous functions, Glasgow Math. J. 40 (1998), 359–365.
  • Alencar, R., Aron, R. M. and Dineen, S., A reflexive space of holomorphic functions in infinitely many variables. Proc. Amer. Math. Soc. 90 (1984), 407–411.
  • Aron, R. M., Finet, C. and Werner, E., Some remarks on norm-attainingn-linear forms, in Function Spaces (Edwardsville, Ill., 1994) (Jarosz, K., ed.), Lecture Notes in Pure Appl. Math. 172, pp. 19–28, Marcel Dekker, New York, 1995.
  • Berg, I. and Sims, B., Denseness of operators which attain their numerical radii, J. Austral. Math. Soc. Ser. A 36 (1984), 130–133.
  • Bonsall, F. and Duncan, J., Numerical Ranges II, London Math. Soc. Lecture Note Series 10, Cambridge Univ. Press. Cambridge, 1973.
  • Bourgin, R. D., Geometric Aspects of Convex Sets with the Radon-Nikodym Property, Lecture Notes in Math. 993, Springer-Verlag, Berlin-Heidelberg, 1983.
  • Cardassi, C., Numerical radius attaining operators on C(K), Proc. Amer. Math. Soc. 95 (1985), 537–543.
  • Choi, Y. S., Norm attaining bilinear forms on L1[0,1], J. Math. Anal. Appl. 211 (1997), 295–300.
  • Choi, Y. S. and Kim, S. G., Norm or numerical radius attaining multilinear mappings and polynomials, J. London Math. Soc. 54 (1996), 135–147.
  • Debs, R. G., Godefroy, G. and Saint Raymond, J., Topological properties of the set of norm-attaining linear functionals Canad. J. Math. 47 (1995), 318–329.
  • James, R. C., Weakly compact sets, Trans. Amer. Math. Soc. 113 (1964), 129–140.
  • Jaramillo, J. A. and Morales, L. A., Duality and reflexivity in spaces of polynomials, Arch. Math. (Basel) 74 (2000), 282–293.
  • Jiménez Sevilla, M. and Moreno, J. P., A note on norm attaining functionals, Proc. Amer. Math. Soc. 126 (1998), 1989–1997.
  • Jiménez Sevilla, M. and Payá, R., Norm attaining multilinear forms and polynomials on preduals of Lorentz sequence spaces, Studia Math. 127 (1998), 99–112.
  • Kenderov, P. S., Moors, W. B. and Sciffer, S., Norm attaining functionals on C(T), Proc. Amer. Math. Soc. 126 (1998), 153–157.
  • Mujica, J. and Valdivia, M., Holomorphic germs on Tsirelson's space, Proc. Amer. Math. Soc. 123 (1995), 1379–1384.
  • Payá, R., A counterexample on numerical radius attaining operators, Israel J. Math. 79 (1992), 83–101.
  • Payá, R. and Saleh, Y., New sufficient conditions for the denseness of norm attaining multilinear forms, Bull. London Math. Soc. 34 (2002), 212–218.
  • Ruiz Galán, M., Polynomials, symmetric multilinear forms and weak compactness, accepted for publication in Positivity.
  • Ryan, R., Applications of Topological Tensor Products to Infinite Dimensional Holomorphy, Ph.D. Thesis, Trinity College, Dublin, 1980.