Abstract and Applied Analysis

On Analog of Fourier Transform in Interior of the Light Cone

Tatyana Shtepina

Full-text: Open access

Abstract

We introduce an analog of Fourier transform F h ρ in interior of light cone that commutes with the action of the Lorentz group. We describe some properties of F h ρ , namely, its action on pseudoradial functions and functions being products of pseudoradial function and space hyperbolic harmonics. We prove that F h ρ -transform gives a one-to-one correspondence on each of the irreducible components of quasiregular representation. We calculate the inverse transform too.

Article information

Source
Abstr. Appl. Anal., Volume 2014, Special Issue (2013), Article ID 685794, 7 pages.

Dates
First available in Project Euclid: 6 October 2014

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1412606517

Digital Object Identifier
doi:10.1155/2014/685794

Mathematical Reviews number (MathSciNet)
MR3248872

Zentralblatt MATH identifier
07022877

Citation

Shtepina, Tatyana. On Analog of Fourier Transform in Interior of the Light Cone. Abstr. Appl. Anal. 2014, Special Issue (2013), Article ID 685794, 7 pages. doi:10.1155/2014/685794. https://projecteuclid.org/euclid.aaa/1412606517


Export citation

References

  • E. M. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean Spaces, Princeton University Press, 1971.
  • N. Y. Vilenkin, Special Functions and Representations of Groups, Nauka, Moscow, Russia, 2nd edition, 1991.
  • I. M. Gel'fand, M. I. Graev, and N. Y. Vilenkin, Integral Geom-etry and Representation Theory, Generalized Functions, vol. 5, Academic Press, New York, NY, USA, 1966.
  • V. P. Burskii and T. V. Shtepina, “On the spectrum of an equivariant extension of the Laplace operator in a ball,” Ukrainian Mathematical Journal, vol. 52, no. 11, pp. 1679–1690, 2000.
  • S. Helgason, Groups and Geometric Aanalysis, vol. 113, Academic Press, 1984.
  • V. V. Shtepin and T. V. Shtepina, “An application of intertwining operators in functional analysis,” Izvestiya Mathematics, vol. 73, no. 6, pp. 1265–1288, 2009.
  • A. Erdélyi, “Die Funksche Integralgleichung der Kugelflächenfunktionen und ihre Übertragung auf die Überkugel,” Mathematische Annalen, vol. 115, no. 1, pp. 456–465, 1938.
  • T. V. Shtepina, “A generalization of the Funk-Hecke theorem to the case of hyperbolic space,” Izvestiya: Mathematics, vol. 68, no. 5, pp. 1051–1061, 2004.
  • A. P. Prudnikov, Y. A. Brychkov, and O. I. Marichev, Integrals and Series: Special Functions, vol. 2, Gordon & Breach, New York, NY, USA, 1990.
  • T. V. Shtepina, “About representation as convolution of the operator, permutable with the operator quasiregular representations of group of Lorentz,” Trudy Instituta Prikladnoj Matematiki i Mekhaniki, vol. 7, pp. 225–228, 2002. \endinput