Abstract and Applied Analysis

Deterministic and Stochastic Bifurcations of the Catalytic CO Oxidation on Ir(111) Surfaces with Multiple Delays

Zaitang Huang and Weihua Lei

Full-text: Open access

Abstract

The main purpose is to investigate both deterministic and stochastic bifurcations of the catalytic CO oxidation. Firstly, super- and subcritical bifurcations are determined by the signs of the Poincaré-Lyapunov coefficients of the center manifold scalar bifurcation equations. Secondly, we explore the stochastic bifurcation of the catalytic CO oxidation on Ir(111) surfaces with multiple delays according to the qualitative changes in the invariant measure, the Lyapunov exponent, and the stationary probability density of system response. Some new criteria ensuring stability and stochastic bifurcation are obtained.

Article information

Source
Abstr. Appl. Anal., Volume 2013, Special Issue (2012), Article ID 790946, 14 pages.

Dates
First available in Project Euclid: 26 February 2014

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1393450533

Digital Object Identifier
doi:10.1155/2013/790946

Zentralblatt MATH identifier
1280.80003

Citation

Huang, Zaitang; Lei, Weihua. Deterministic and Stochastic Bifurcations of the Catalytic CO Oxidation on Ir(111) Surfaces with Multiple Delays. Abstr. Appl. Anal. 2013, Special Issue (2012), Article ID 790946, 14 pages. doi:10.1155/2013/790946. https://projecteuclid.org/euclid.aaa/1393450533


Export citation

References

  • L. Arnold, Random Dynamical Systems, Springer, New York, NY, USA, 1998.
  • X. Mao, Stochastic Differential Equations and their Applications, Horwood Publishing, Chichester, UK, 1997.
  • W. Zhu, Nonlinear Stochastic Dynamics and Control in Hamiltonian Formulation, Science Press, Beijing, China, 2003.
  • N. Sri Namachchivaya, “Stochastic bifurcation,” Applied Mathematics and Computation, vol. 38, no. 2, pp. 101–159, 1990.
  • R. Z. Khasminskii, “On the principle of averaging the Itô's stochastic differential equations,” Kybernetika, vol. 4, pp. 260–279, 1968.
  • H. Keller, “Random Attractors and and bifurcations of the stochastic Lorenz system,” Technical Report 389, Institut für Dynamische Systeme, Universität Bremen, 1996.
  • D. Huang, H. Wang, J. Feng, and Z.-W. Zhu, “Hopf bifurcation of the stochastic model on HAB nonlinear stochastic dynamics,” Chaos, Solitons and Fractals, vol. 27, no. 4, pp. 1072–1079, 2006.
  • L. Hong and J.-Q. Sun, “Codimension two bifurcations of nonlinear systems driven by fuzzy noise,” Physica D: Nonlinear Phenomena, vol. 213, no. 2, pp. 181–189, 2006.
  • Z. Huang, Q. Yang, and J. Cao, “Stochastic stability and bifurcation for the chronic state in Marchuk's model with noise,” Applied Mathematical Modelling, vol. 35, no. 12, pp. 5842–5855, 2011.
  • H. Hasegawa, “Stochastic bifurcation in FitzHugh-Nagumo ensembles subjected to additive and/or multiplicative noises,” Physica D: Nonlinear Phenomena, vol. 237, no. 2, pp. 137–155, 2008.
  • Y. Hayase, S. Wehner, J. Küppers, and H. R. Brand, “External noise imposed on the reaction-diffusion system CO+O$_{2}\,\rightarrow\,$ CO$_{2}$ on Ir(111) surfaces: experiment and theory,” Physical Review E, vol. 69, no. 2, Article ID 021609, 15 pages, 2004.
  • S. Wehner, P. Hoffmann, D. Schmeißer, H. R. Brand, and J. Küppers, “Spatiotemporal patterns of external noise-induced transitions in a bistable reaction-diffusion system: photoelectron emission microscopy experiments and modeling,” Physical Review Letters, vol. 95, no. 3, Article ID 038301, pp. 1–4, 2005.
  • P. Hoffmann, S. Wehner, D. Schmeisser, H. R. Brand, and J. Küppers, “Noise-induced spatiotemporal patterns in a bistable reaction-diffusion system: photoelectron emission microscopy experiments and modeling of the CO oxidation reaction on Ir(111),” Physical Review E, vol. 73, no. 5, Article ID 056123, 2006.
  • P. S. Bodega, S. Alonso, and H. H. Rotermund, “Effects of external global noise on the catalytic CO oxidation on Pt(110),” Journal of Chemical Physics, vol. 130, no. 8, Article ID 084704, 2009.
  • J. Cisternas, D. Escaff, O. Descalzi, and S. Wehner, “Stochastic model calculation for the carbon monoxide oxidation on iridium(111) surfaces,” International Journal of Bifurcation and Chaos, vol. 19, no. 10, pp. 3461–3472, 2009.
  • M. Bär, C. Zülicke, M. Eiswirth, and G. Ertl, “Theoretical modeling of spatiotemporal self-organization in a surface catalyzed reaction exhibiting bistable kinetics,” The Journal of Chemical Physics, vol. 96, no. 11, pp. 8595–8604, 1992.
  • S. Wehner, F. Baumann, and J. Küppers, “Kinetic hysteresis in the CO oxidation reaction on Ir(111) surfaces,” Chemical Physics Letters, vol. 370, no. 1-2, pp. 126–131, 2003.
  • S. Wehner, F. Baumann, M. Ruckdeschel, and J. Küppers, “Kinetic phase transitions in the reaction CO+O$\,\rightarrow\,$CO$_{2}$ on Ir(111) surfaces,” Journal of Chemical Physics, vol. 119, no. 13, pp. 6823–6831, 2003.
  • J. Hale, Theory of Functional Differential Equations, Springer, New York, NY, USA, 1977.
  • J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional-Differential Equations, vol. 99, Springer, New York, NY, USA, 1993.
  • M. S. Fofana, “Aspects of stable and unstable machining by Hopf bifurcation,” Applied Mathematical Modelling, vol. 26, no. 10, pp. 953–973, 2002.
  • J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, vol. 42, Springer, New York, NY, USA, 1983.
  • B. D. Hassard, N. D. Kazarinoff, and Y. H. Wan, Theory and Applications of Hopf Bifurcation, vol. 41 of London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge, UK, 1981.
  • S. A. Campbell, J. Bélair, T. Ohira, and J. Milton, “Limit cycles, tori, and complex dynamics in a second-order differential equation with delayed negative feedback,” Journal of Dynamics and Differential Equations, vol. 7, no. 1, pp. 213–236, 1995.