Abstract and Applied Analysis

Periodic Solutions of Some Impulsive Hamiltonian Systems with Convexity Potentials

Dezhu Chen and Binxiang Dai

Full-text: Open access

Abstract

We study the existence of periodic solutions of some second-order Hamiltonian systems with impulses. We obtain some new existence theorems by variational methods.

Article information

Source
Abstr. Appl. Anal., Volume 2012, Special Issue (2012), Article ID 616427, 8 pages.

Dates
First available in Project Euclid: 5 April 2013

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1365168319

Digital Object Identifier
doi:10.1155/2012/616427

Mathematical Reviews number (MathSciNet)
MR2999908

Zentralblatt MATH identifier
1261.34035

Citation

Chen, Dezhu; Dai, Binxiang. Periodic Solutions of Some Impulsive Hamiltonian Systems with Convexity Potentials. Abstr. Appl. Anal. 2012, Special Issue (2012), Article ID 616427, 8 pages. doi:10.1155/2012/616427. https://projecteuclid.org/euclid.aaa/1365168319


Export citation

References

  • J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, vol. 74, Springer, Berlin, Germany, 1989.
  • C.-L. Tang and X.-P. Wu, “Some critical point theorems and their applications to periodic solution for second order Hamiltonian systems,” Journal of Differential Equations, vol. 248, no. 4, pp. 660–692, 2010.
  • J. Mawhin, “Semicoercive monotone variational problems,” Académie Royale de Belgique, Bulletin de la Classe des Sciences, vol. 73, no. 3-4, pp. 118–130, 1987.
  • C.-L. Tang, “An existence theorem of solutions of semilinear equations in reflexive Banach spaces and its applications,” Académie Royale de Belgique, Bulletin de la Classe des Sciences, vol. 4, no. 7–12, pp. 317–330, 1996.
  • J. J. Nieto, “Variational formulation of a damped Dirichlet impulsive problem,” Applied Mathematics Letters, vol. 23, no. 8, pp. 940–942, 2010.
  • J. J. Nieto and D. O'Regan, “Variational approach to impulsive differential equations,” Nonlinear Analysis. Real World Applications, vol. 10, no. 2, pp. 680–690, 2009.
  • J. Zhou and Y. Li, “Existence of solutions for a class of second-order Hamiltonian systems with impulsive effects,” Nonlinear Analysis: Theory, Methods & Applications, vol. 72, no. 3-4, pp. 1594–1603, 2010.
  • H. Zhang and Z. Li, “Periodic solutions of second-order nonautonomous impulsive di erential equations,” International Journal of Qualitative Theory of Differential Equations and Applications, vol. 2, no. 1, pp. 112–124, 2008.
  • J. Zhou and Y. Li, “Existence and multiplicity of solutions for some Dirichlet problems with impulsive effects,” Nonlinear Analysis: Theory, Methods & Applications, vol. 71, no. 7-8, pp. 2856–2865, 2009.
  • W. Ding and D. Qian, “Periodic solutions for sublinear systems via variational approach,” Nonlinear Analysis: Real World Applications, vol. 11, no. 4, pp. 2603–2609, 2010.
  • H. Zhang and Z. Li, “Periodic and homoclinic solutions generated by impulses,” Nonlinear Analysis: Real World Applications, vol. 12, no. 1, pp. 39–51, 2011.
  • Z. Zhang and R. Yuan, “An application of variational methods to Dirichlet boundary value problem with impulses,” Nonlinear Analysis: Real World Applications, vol. 11, no. 1, pp. 155–162, 2010.
  • D. Zhang and B. Dai, “Infinitely many solutions for a class of nonlinear impulsive differential equations with periodic boundary conditions,” Computers & Mathematics with Applications, vol. 61, no. 10, pp. 3153–3160, 2011.
  • L. Yang and H. Chen, “Existence and multiplicity of periodic solutions generated by impulses,” Abstract and Applied Analysis, vol. 2011, Article ID 310957, 15 pages, 2011.
  • J. Sun, H. Chen, and J. J. Nieto, “Infinitely many solutions for second-order Hamiltonian system with impulsive effects,” Mathematical and Computer Modelling, vol. 54, no. 1-2, pp. 544–555, 2011.
  • J. Sun, H. Chen, J. J. Nieto, and M. Otero-Novoa, “The multiplicity of solutions for perturbed second-order Hamiltonian systems with impulsive effects,” Nonlinear Analysis: Theory, Methods & Applications, vol. 72, no. 12, pp. 4575–4586, 2010.