## Abstract and Applied Analysis

### ${N}_{\theta }$-Ward Continuity

Huseyin Cakalli

#### Abstract

A function $f$ is continuous if and only if $f$ preserves convergent sequences; that is, $(f({\alpha }_{n}))$ is a convergent sequence whenever $({\alpha }_{n})$ is convergent. The concept of ${N}_{\theta }$-ward continuity is defined in the sense that a function $f$ is ${N}_{\theta }$-ward continuous if it preserves ${N}_{\theta }$-quasi-Cauchy sequences; that is, $(f({\alpha }_{n}))$ is an ${N}_{\theta }$-quasi-Cauchy sequence whenever $({\alpha }_{n})$ is ${N}_{\theta }$-quasi-Cauchy. A sequence $({\alpha }_{k})$ of points in $\mathbf{R}$, the set of real numbers, is ${N}_{\theta }$-quasi-Cauchy if ${\mathrm{lim}}_{r\to \infty }(1/{h}_{r}){\sum }_{k\in {I}_{r}}|\Delta {\alpha }_{k}|=0$, where $\Delta {\alpha }_{k}={\alpha }_{k+1}-{\alpha }_{k}$, ${I}_{r}=({k}_{r-1},{k}_{r}],$ and $\theta =({k}_{r})$ is a lacunary sequence, that is, an increasing sequence of positive integers such that ${k}_{0}=0$ and ${h}_{r}:{k}_{r}-{k}_{r-1}\to \infty$. A new type compactness, namely, ${N}_{\theta }$-ward compactness, is also, defined and some new results related to this kind of compactness are obtained.

#### Article information

Source
Abstr. Appl. Anal., Volume 2012 (2012), Article ID 680456, 8 pages.

Dates
First available in Project Euclid: 14 December 2012

https://projecteuclid.org/euclid.aaa/1355495749

Digital Object Identifier
doi:10.1155/2012/680456

Mathematical Reviews number (MathSciNet)
MR2935154

Zentralblatt MATH identifier
1260.40001

#### Citation

Cakalli, Huseyin. ${N}_{\theta }$ -Ward Continuity. Abstr. Appl. Anal. 2012 (2012), Article ID 680456, 8 pages. doi:10.1155/2012/680456. https://projecteuclid.org/euclid.aaa/1355495749

#### References

• H. Cakalli, “Slowly oscillating continuity,” Abstract and Applied Analysis, vol. 2008, Article ID 485706, 5 pages, 2008.
• \.I. Çanak and M. Dik, “New types of continuities,” Abstract and Applied Analysis, vol. 2010, Article ID 258980, 6 pages, 2010.
• H. Cakalli, “$\delta$-quasi-Cauchy sequences,” Mathematical and Computer Modelling, vol. 53, no. 1-2, pp. 397–401, 2011.
• H. Cakalli, “Forward continuity,” Journal of Computational Analysis and Applications, vol. 13, no. 2, pp. 225–230, 2011.
• H. Cakalli, “Statistical ward continuity,” Applied Mathematics Letters, vol. 24, no. 10, pp. 1724–1728, 2011.
• H. Cakalli, “Statistical quasi-Cauchy sequences,” Mathematical and Computer Modelling, vol. 54, no. 5-6, pp. 1620–1624, 2011.
• R. W. Vallin, “Creating slowly oscillating sequences and slowly oscillating continuous functions,” Acta Mathematica Universitatis Comenianae, vol. 80, no. 1, pp. 71–78, 2011.
• D. Burton and J. Coleman, “Quasi-Cauchy sequences,” American Mathematical Monthly, vol. 117, no. 4, pp. 328–333, 2010.
• F. Dik, M. Dik, and \.I. Çanak, “Applications of subsequential Tauberian theory to classical Tauberian theory,” Applied Mathematics Letters, vol. 20, no. 8, pp. 946–950, 2007.
• J. Connor and K.-G. Grosse-Erdmann, “Sequential definitions of continuity for real functions,” The Rocky Mountain Journal of Mathematics, vol. 33, no. 1, pp. 93–121, 2003.
• J. A. Fridy, “On statistical convergence,” Analysis, vol. 5, no. 4, pp. 301–313, 1985.
• G. Di Maio and L. D. R. Kočinac, “Statistical convergence in topology,” Topology and Its Applications, vol. 156, no. 1, pp. 28–45, 2008.
• H. Cakalli, “A study on statistical convergence,” Functional Analysis, Approximation and Computation, vol. 1, no. 2, pp. 19–24, 2009.
• A. Caserta, G. Di Maio, and L. D. R. Kočinac, “Statistical convergence in function spaces,” Abstract and Applied Analysis, vol. 2011, Article ID 420419, 11 pages, 2011.
• A. Caserta and L. D. R. Kočinac, “ čommentComment on ref. [15?]: Please update the information of this reference, if possible.On statistical exhaustiveness,” Applied Mathematics Letters. In press.
• H. Cakalli, “Sequential definitions of compactness,” Applied Mathematics Letters, vol. 21, no. 6, pp. 594–598, 2008.
• H. Cakalli, “On $G$-continuity,” Computers & Mathematics with Applications, vol. 61, no. 2, pp. 313–318, 2011.
• A. R. Freedman, J. J. Sember, and M. Raphael, “Some Cesàro-type summability spaces,” Proceedings of the London Mathematical Society, vol. 37, no. 3, pp. 508–520, 1978.
• M. Basarir and S. Altunda, “On $\Delta$-${N}_{\theta }$-lacunary statistical asymptotically equivalent sequences,” Univerzitet u Nišu. Prirodno-Matematički Fakultet, vol. 22, no. 1, pp. 161–172, 2008.
• J. A. Fridy and C. Orhan, “Lacunary statistical convergence,” Pacific Journal of Mathematics, vol. 160, no. 1, pp. 43–51, 1993.
• J. A. Fridy and C. Orhan, “Lacunary statistical summability,” Journal of Mathematical Analysis and Applications, vol. 173, no. 2, pp. 497–504, 1993.
• H. Cakalli, “Lacunary statistical convergence in topological groups,” Indian Journal of Pure and Applied Mathematics, vol. 26, no. 2, pp. 113–119, 1995.
• H. Cakalli, “Sequential definitions of connectedness,” Applied Mathematics Letters, vol. 25, no. 3, pp. 461–465, 2012.
• H. Cakalli and P. Das, “Fuzzy compactness via summability,” Applied Mathematics Letters, vol. 22, no. 11, pp. 1665–1669, 2009.